基于区域划分的大规模图像搜索

Yunbo Rao, Wei Liu, J. Pu, Zheng Wang, Qifei Wang
{"title":"基于区域划分的大规模图像搜索","authors":"Yunbo Rao, Wei Liu, J. Pu, Zheng Wang, Qifei Wang","doi":"10.1109/ICDEW.2019.00059","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the problem of image feature extraction and similarity measure using region division search. Specifically, we proposed a novel image region division to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed for optimizing our region division search method. Moreover, an extended Canberra distance is proposed for images similarity measure to increase the faulttolerant ability of the whole large-scale image search. Extensive experiments on several benchmark image retrieval databases validate the superiority of the proposed approaches.","PeriodicalId":186190,"journal":{"name":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Image Search using Region Division\",\"authors\":\"Yunbo Rao, Wei Liu, J. Pu, Zheng Wang, Qifei Wang\",\"doi\":\"10.1109/ICDEW.2019.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the problem of image feature extraction and similarity measure using region division search. Specifically, we proposed a novel image region division to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed for optimizing our region division search method. Moreover, an extended Canberra distance is proposed for images similarity measure to increase the faulttolerant ability of the whole large-scale image search. Extensive experiments on several benchmark image retrieval databases validate the superiority of the proposed approaches.\",\"PeriodicalId\":186190,\"journal\":{\"name\":\"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW.2019.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2019.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了基于区域分割搜索的图像特征提取和相似度度量问题。具体而言,我们提出了一种新的图像区域划分方法,以大致模拟图像颜色的位置分布,并解决颜色直方图不能描述空间信息的问题。在此基础上,提出了一种结合局部颜色直方图和Gabor纹理特征的降维图像描述符,用于优化区域划分搜索方法。此外,提出了一种扩展的堪培拉距离用于图像相似度量,以提高整个大规模图像搜索的容错能力。在多个基准图像检索数据库上的大量实验验证了所提方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Scale Image Search using Region Division
In this paper, we focus on the problem of image feature extraction and similarity measure using region division search. Specifically, we proposed a novel image region division to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed for optimizing our region division search method. Moreover, an extended Canberra distance is proposed for images similarity measure to increase the faulttolerant ability of the whole large-scale image search. Extensive experiments on several benchmark image retrieval databases validate the superiority of the proposed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信