{"title":"直接驱动海浪能发电厂的设计方法","authors":"J. Prudell, A. Schacher, K. Rhinefrank","doi":"10.1109/OCEANS.2012.6405097","DOIUrl":null,"url":null,"abstract":"Conversion of power from ocean waves requires power take off systems which are designed to accommodate a wide range of power variations. Power smoothing has traditionally been designed into the primary mechanical power conversion process. With a direct drive design, power smoothing is achieved by power electronics. The following paper presents a comprehensive analysis of the system requirements and design philosophy for the electric plant of a direct drive ocean wave energy converter (WEC). Annual real seas data was used to model power flow from rotary Permanent Magnet Generators (PMG) through the electric plant to the grid. Component pricing and site specific wave climates are incorporated into simulations to guide the electric plant design development. The results of these simulations provide design recommendations on WEC electric plant configuration and component specification for the lowest capital cost and high energy production.","PeriodicalId":434023,"journal":{"name":"2012 Oceans","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Direct drive ocean wave energy electric plant design methodology\",\"authors\":\"J. Prudell, A. Schacher, K. Rhinefrank\",\"doi\":\"10.1109/OCEANS.2012.6405097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conversion of power from ocean waves requires power take off systems which are designed to accommodate a wide range of power variations. Power smoothing has traditionally been designed into the primary mechanical power conversion process. With a direct drive design, power smoothing is achieved by power electronics. The following paper presents a comprehensive analysis of the system requirements and design philosophy for the electric plant of a direct drive ocean wave energy converter (WEC). Annual real seas data was used to model power flow from rotary Permanent Magnet Generators (PMG) through the electric plant to the grid. Component pricing and site specific wave climates are incorporated into simulations to guide the electric plant design development. The results of these simulations provide design recommendations on WEC electric plant configuration and component specification for the lowest capital cost and high energy production.\",\"PeriodicalId\":434023,\"journal\":{\"name\":\"2012 Oceans\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Oceans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2012.6405097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2012.6405097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct drive ocean wave energy electric plant design methodology
Conversion of power from ocean waves requires power take off systems which are designed to accommodate a wide range of power variations. Power smoothing has traditionally been designed into the primary mechanical power conversion process. With a direct drive design, power smoothing is achieved by power electronics. The following paper presents a comprehensive analysis of the system requirements and design philosophy for the electric plant of a direct drive ocean wave energy converter (WEC). Annual real seas data was used to model power flow from rotary Permanent Magnet Generators (PMG) through the electric plant to the grid. Component pricing and site specific wave climates are incorporated into simulations to guide the electric plant design development. The results of these simulations provide design recommendations on WEC electric plant configuration and component specification for the lowest capital cost and high energy production.