考虑下沉和纵倾的浅水船-船水动力相互作用数值计算方法

H. Ren, Chen Xu, Xueqian Zhou, S. Sutulo, Carlos Soares
{"title":"考虑下沉和纵倾的浅水船-船水动力相互作用数值计算方法","authors":"H. Ren, Chen Xu, Xueqian Zhou, S. Sutulo, Carlos Soares","doi":"10.1115/omae2019-96151","DOIUrl":null,"url":null,"abstract":"\n Sinkage and trim, which often occur to ships moving in shallow water, do not only have an effect on the ship-ship hydrodynamic interaction forces, but also increase the risk of grounding. An algorithm based on the potential theory has been devised for real-time simulation of the hydrodynamic interaction between two ships in shallow water accounting for sinkage and trim. The shallow water condition is modeled using the mirror image method; while the sinkage and trim are solved iteratively based on the principle of hydrostatic balance, where a mesh trimming procedure is performed when the waterline is changed. Simulations are performed with and without accounting for the sinkage and trim, and comparison with experimental results shows a fair agreement.","PeriodicalId":124589,"journal":{"name":"Volume 7B: Ocean Engineering","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Numerical Method for Calculation of Ship-Ship Hydrodynamics Interaction in Shallow Water Accounting for Sinkage and Trim\",\"authors\":\"H. Ren, Chen Xu, Xueqian Zhou, S. Sutulo, Carlos Soares\",\"doi\":\"10.1115/omae2019-96151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Sinkage and trim, which often occur to ships moving in shallow water, do not only have an effect on the ship-ship hydrodynamic interaction forces, but also increase the risk of grounding. An algorithm based on the potential theory has been devised for real-time simulation of the hydrodynamic interaction between two ships in shallow water accounting for sinkage and trim. The shallow water condition is modeled using the mirror image method; while the sinkage and trim are solved iteratively based on the principle of hydrostatic balance, where a mesh trimming procedure is performed when the waterline is changed. Simulations are performed with and without accounting for the sinkage and trim, and comparison with experimental results shows a fair agreement.\",\"PeriodicalId\":124589,\"journal\":{\"name\":\"Volume 7B: Ocean Engineering\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7B: Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-96151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在浅水中航行的船舶经常会发生下沉和纵倾,这不仅会对船-船水动力相互作用力产生影响,而且会增加搁浅的风险。基于势理论,设计了一种考虑下沉和纵倾的浅水两船水动力相互作用实时仿真算法。采用镜像法模拟浅水条件;下沉和修整是基于静水平衡原理迭代求解的,其中当水线变化时进行网格修整。仿真结果表明,考虑和不考虑下沉和纵倾的情况下,仿真结果基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Numerical Method for Calculation of Ship-Ship Hydrodynamics Interaction in Shallow Water Accounting for Sinkage and Trim
Sinkage and trim, which often occur to ships moving in shallow water, do not only have an effect on the ship-ship hydrodynamic interaction forces, but also increase the risk of grounding. An algorithm based on the potential theory has been devised for real-time simulation of the hydrodynamic interaction between two ships in shallow water accounting for sinkage and trim. The shallow water condition is modeled using the mirror image method; while the sinkage and trim are solved iteratively based on the principle of hydrostatic balance, where a mesh trimming procedure is performed when the waterline is changed. Simulations are performed with and without accounting for the sinkage and trim, and comparison with experimental results shows a fair agreement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信