Oscar Cuadros, Bruno S. Faiçal, Paulo Barbosa, B. Hamann, A. Fabro, A. Traina
{"title":"如何在高分辨率肺活检图像中自动识别感兴趣区域用于间质性纤维化诊断","authors":"Oscar Cuadros, Bruno S. Faiçal, Paulo Barbosa, B. Hamann, A. Fabro, A. Traina","doi":"10.1109/CBMS.2019.00118","DOIUrl":null,"url":null,"abstract":"Airway-centered Interstitial Fibrosis (ACIF) is a histological pattern of Interstitial lung diseases. Its diagnosis requires a multidisciplinary approach, in which diverse information, such as clinical data, computed tomography data, and lung biopsy data, is analyzed. Biopsy samples are digitized at high-resolution. Of crucial interest are broncho-and bronchiolocentric remodeling with extracellular matrix deposition. To analyze an image, specialists have to explore it at low microscope magnification, select a region of interest and export a smaller specified sub-image to be interpreted at higher magnification. This process is performed several times, requiring hours, becoming a tiresome task. We propose a method to support pathologists to identify specific patterns of ACIF in high-resolution images from lung biopsies. This can be done by a) automatic microscope magnification reduction; b) computing the probability of pixels belonging to high-density regions; c) extracting Local Binary Patterns (LBP) of the high-and low-density regions; and d) visualizing them in color. We have evaluated our method on nine high-resolution lung biopsies. We have tested the LBP features of high-and low-density regions with the kNN algorithm and obtained a classification accuracy of 94.4%, which is the highest one reported in the literature for this type of data.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How to Automatically Identify Regions of Interest in High-Resolution Images of Lung Biopsy for Interstitial Fibrosis Diagnosis\",\"authors\":\"Oscar Cuadros, Bruno S. Faiçal, Paulo Barbosa, B. Hamann, A. Fabro, A. Traina\",\"doi\":\"10.1109/CBMS.2019.00118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Airway-centered Interstitial Fibrosis (ACIF) is a histological pattern of Interstitial lung diseases. Its diagnosis requires a multidisciplinary approach, in which diverse information, such as clinical data, computed tomography data, and lung biopsy data, is analyzed. Biopsy samples are digitized at high-resolution. Of crucial interest are broncho-and bronchiolocentric remodeling with extracellular matrix deposition. To analyze an image, specialists have to explore it at low microscope magnification, select a region of interest and export a smaller specified sub-image to be interpreted at higher magnification. This process is performed several times, requiring hours, becoming a tiresome task. We propose a method to support pathologists to identify specific patterns of ACIF in high-resolution images from lung biopsies. This can be done by a) automatic microscope magnification reduction; b) computing the probability of pixels belonging to high-density regions; c) extracting Local Binary Patterns (LBP) of the high-and low-density regions; and d) visualizing them in color. We have evaluated our method on nine high-resolution lung biopsies. We have tested the LBP features of high-and low-density regions with the kNN algorithm and obtained a classification accuracy of 94.4%, which is the highest one reported in the literature for this type of data.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How to Automatically Identify Regions of Interest in High-Resolution Images of Lung Biopsy for Interstitial Fibrosis Diagnosis
Airway-centered Interstitial Fibrosis (ACIF) is a histological pattern of Interstitial lung diseases. Its diagnosis requires a multidisciplinary approach, in which diverse information, such as clinical data, computed tomography data, and lung biopsy data, is analyzed. Biopsy samples are digitized at high-resolution. Of crucial interest are broncho-and bronchiolocentric remodeling with extracellular matrix deposition. To analyze an image, specialists have to explore it at low microscope magnification, select a region of interest and export a smaller specified sub-image to be interpreted at higher magnification. This process is performed several times, requiring hours, becoming a tiresome task. We propose a method to support pathologists to identify specific patterns of ACIF in high-resolution images from lung biopsies. This can be done by a) automatic microscope magnification reduction; b) computing the probability of pixels belonging to high-density regions; c) extracting Local Binary Patterns (LBP) of the high-and low-density regions; and d) visualizing them in color. We have evaluated our method on nine high-resolution lung biopsies. We have tested the LBP features of high-and low-density regions with the kNN algorithm and obtained a classification accuracy of 94.4%, which is the highest one reported in the literature for this type of data.