{"title":"物联网(IoT)应用的圆极化无线电力传输系统","authors":"Wei Lin, R. Ziolkowski","doi":"10.1109/AMS48904.2020.9059529","DOIUrl":null,"url":null,"abstract":"A circularly polarized (CP) wireless power transfer (WPT) system is demonstrated. It consists of a high directivity, omnidirectional CP (OCP) antenna array and multiple electrically small Huygens CP (HCP) rectennas. The OCP array emits highly directional CP fields over the entire azimuthal plane. It acts as the wireless power source for charging or powering up surrounding IoT sensors. The OCP array is realized by cascading multiple vertical bars and helical loops to form a set of properly phased, collinear array of electric and magnetic dipoles. Wirelessly powered (WP) sensors are facilitated by combining sensors with HCP rectennas, the latter being a seamless integration of an electrically small HCP antenna with highly efficient rectifier circuits. Both systems were tested and achieved their predicted performance characteristics. These WP sensor systems are ideal candidates for wireless internet-of-things (IoT) applications, for example, in the food and agriculture industries, which are amongst the largest enterprises in Australia.","PeriodicalId":257699,"journal":{"name":"2020 4th Australian Microwave Symposium (AMS)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Circularly Polarized Wireless Power Transfer System for Internet-of-Things (IoT) Applications\",\"authors\":\"Wei Lin, R. Ziolkowski\",\"doi\":\"10.1109/AMS48904.2020.9059529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A circularly polarized (CP) wireless power transfer (WPT) system is demonstrated. It consists of a high directivity, omnidirectional CP (OCP) antenna array and multiple electrically small Huygens CP (HCP) rectennas. The OCP array emits highly directional CP fields over the entire azimuthal plane. It acts as the wireless power source for charging or powering up surrounding IoT sensors. The OCP array is realized by cascading multiple vertical bars and helical loops to form a set of properly phased, collinear array of electric and magnetic dipoles. Wirelessly powered (WP) sensors are facilitated by combining sensors with HCP rectennas, the latter being a seamless integration of an electrically small HCP antenna with highly efficient rectifier circuits. Both systems were tested and achieved their predicted performance characteristics. These WP sensor systems are ideal candidates for wireless internet-of-things (IoT) applications, for example, in the food and agriculture industries, which are amongst the largest enterprises in Australia.\",\"PeriodicalId\":257699,\"journal\":{\"name\":\"2020 4th Australian Microwave Symposium (AMS)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th Australian Microwave Symposium (AMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS48904.2020.9059529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th Australian Microwave Symposium (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS48904.2020.9059529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Circularly Polarized Wireless Power Transfer System for Internet-of-Things (IoT) Applications
A circularly polarized (CP) wireless power transfer (WPT) system is demonstrated. It consists of a high directivity, omnidirectional CP (OCP) antenna array and multiple electrically small Huygens CP (HCP) rectennas. The OCP array emits highly directional CP fields over the entire azimuthal plane. It acts as the wireless power source for charging or powering up surrounding IoT sensors. The OCP array is realized by cascading multiple vertical bars and helical loops to form a set of properly phased, collinear array of electric and magnetic dipoles. Wirelessly powered (WP) sensors are facilitated by combining sensors with HCP rectennas, the latter being a seamless integration of an electrically small HCP antenna with highly efficient rectifier circuits. Both systems were tested and achieved their predicted performance characteristics. These WP sensor systems are ideal candidates for wireless internet-of-things (IoT) applications, for example, in the food and agriculture industries, which are amongst the largest enterprises in Australia.