微通道气泡动力学的晶格玻尔兹曼模拟

Junfeng Zhang, D. Kwok
{"title":"微通道气泡动力学的晶格玻尔兹曼模拟","authors":"Junfeng Zhang, D. Kwok","doi":"10.1109/ICMENS.2004.86","DOIUrl":null,"url":null,"abstract":"The moving contact line problem of liquid-vapor interfaces on solid surfaces was studied using a mean-field free-energy lattice Boltzmann method recently proposed [Zhang et al., Phys. Rev. E, 69, 032602, 2004]. We have examined the static and dynamic interfacial behaviors by means of the bubble and capillary wave tests and found that both the Laplace equation of capillarity and the dispersion relation were satisfied. Dynamic contact angles followed the general trend of contact line velocity observed experimentally and can be described by Blake's theory. The velocity fields near the interface were also obtained and are in good agreement with fluid mechanics and molecular dynamics studies. Our simulations demonstrated that incorporating interfacial effects into the lattice Boltzmann model can be a valuable and powerful alternative in interfacial studies.","PeriodicalId":344661,"journal":{"name":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lattice Boltzmann Simulations of Bubble Dynamics in Microchannels\",\"authors\":\"Junfeng Zhang, D. Kwok\",\"doi\":\"10.1109/ICMENS.2004.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The moving contact line problem of liquid-vapor interfaces on solid surfaces was studied using a mean-field free-energy lattice Boltzmann method recently proposed [Zhang et al., Phys. Rev. E, 69, 032602, 2004]. We have examined the static and dynamic interfacial behaviors by means of the bubble and capillary wave tests and found that both the Laplace equation of capillarity and the dispersion relation were satisfied. Dynamic contact angles followed the general trend of contact line velocity observed experimentally and can be described by Blake's theory. The velocity fields near the interface were also obtained and are in good agreement with fluid mechanics and molecular dynamics studies. Our simulations demonstrated that incorporating interfacial effects into the lattice Boltzmann model can be a valuable and powerful alternative in interfacial studies.\",\"PeriodicalId\":344661,\"journal\":{\"name\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMENS.2004.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMENS.2004.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用最近提出的平均场自由能晶格玻尔兹曼方法研究了固体表面液-气界面的移动接触线问题[Zhang et al., Phys.]。[j].电子工程学报,2004,32(2):481 - 481。通过气泡和毛细波实验考察了界面的静态和动态行为,发现毛细性的拉普拉斯方程和色散关系都满足。动态接触角遵循实验观察到的接触线速度的一般趋势,可以用布莱克理论来描述。得到了界面附近的速度场,与流体力学和分子动力学研究结果吻合较好。我们的模拟表明,将界面效应纳入晶格玻尔兹曼模型可能是界面研究中一个有价值和强大的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lattice Boltzmann Simulations of Bubble Dynamics in Microchannels
The moving contact line problem of liquid-vapor interfaces on solid surfaces was studied using a mean-field free-energy lattice Boltzmann method recently proposed [Zhang et al., Phys. Rev. E, 69, 032602, 2004]. We have examined the static and dynamic interfacial behaviors by means of the bubble and capillary wave tests and found that both the Laplace equation of capillarity and the dispersion relation were satisfied. Dynamic contact angles followed the general trend of contact line velocity observed experimentally and can be described by Blake's theory. The velocity fields near the interface were also obtained and are in good agreement with fluid mechanics and molecular dynamics studies. Our simulations demonstrated that incorporating interfacial effects into the lattice Boltzmann model can be a valuable and powerful alternative in interfacial studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信