{"title":"微通道气泡动力学的晶格玻尔兹曼模拟","authors":"Junfeng Zhang, D. Kwok","doi":"10.1109/ICMENS.2004.86","DOIUrl":null,"url":null,"abstract":"The moving contact line problem of liquid-vapor interfaces on solid surfaces was studied using a mean-field free-energy lattice Boltzmann method recently proposed [Zhang et al., Phys. Rev. E, 69, 032602, 2004]. We have examined the static and dynamic interfacial behaviors by means of the bubble and capillary wave tests and found that both the Laplace equation of capillarity and the dispersion relation were satisfied. Dynamic contact angles followed the general trend of contact line velocity observed experimentally and can be described by Blake's theory. The velocity fields near the interface were also obtained and are in good agreement with fluid mechanics and molecular dynamics studies. Our simulations demonstrated that incorporating interfacial effects into the lattice Boltzmann model can be a valuable and powerful alternative in interfacial studies.","PeriodicalId":344661,"journal":{"name":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lattice Boltzmann Simulations of Bubble Dynamics in Microchannels\",\"authors\":\"Junfeng Zhang, D. Kwok\",\"doi\":\"10.1109/ICMENS.2004.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The moving contact line problem of liquid-vapor interfaces on solid surfaces was studied using a mean-field free-energy lattice Boltzmann method recently proposed [Zhang et al., Phys. Rev. E, 69, 032602, 2004]. We have examined the static and dynamic interfacial behaviors by means of the bubble and capillary wave tests and found that both the Laplace equation of capillarity and the dispersion relation were satisfied. Dynamic contact angles followed the general trend of contact line velocity observed experimentally and can be described by Blake's theory. The velocity fields near the interface were also obtained and are in good agreement with fluid mechanics and molecular dynamics studies. Our simulations demonstrated that incorporating interfacial effects into the lattice Boltzmann model can be a valuable and powerful alternative in interfacial studies.\",\"PeriodicalId\":344661,\"journal\":{\"name\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMENS.2004.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMENS.2004.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
采用最近提出的平均场自由能晶格玻尔兹曼方法研究了固体表面液-气界面的移动接触线问题[Zhang et al., Phys.]。[j].电子工程学报,2004,32(2):481 - 481。通过气泡和毛细波实验考察了界面的静态和动态行为,发现毛细性的拉普拉斯方程和色散关系都满足。动态接触角遵循实验观察到的接触线速度的一般趋势,可以用布莱克理论来描述。得到了界面附近的速度场,与流体力学和分子动力学研究结果吻合较好。我们的模拟表明,将界面效应纳入晶格玻尔兹曼模型可能是界面研究中一个有价值和强大的替代方案。
Lattice Boltzmann Simulations of Bubble Dynamics in Microchannels
The moving contact line problem of liquid-vapor interfaces on solid surfaces was studied using a mean-field free-energy lattice Boltzmann method recently proposed [Zhang et al., Phys. Rev. E, 69, 032602, 2004]. We have examined the static and dynamic interfacial behaviors by means of the bubble and capillary wave tests and found that both the Laplace equation of capillarity and the dispersion relation were satisfied. Dynamic contact angles followed the general trend of contact line velocity observed experimentally and can be described by Blake's theory. The velocity fields near the interface were also obtained and are in good agreement with fluid mechanics and molecular dynamics studies. Our simulations demonstrated that incorporating interfacial effects into the lattice Boltzmann model can be a valuable and powerful alternative in interfacial studies.