使用多面体分析自动化异构系统中的数据管理

V. Vassiliadis, C. Antonopoulos, George Zindros
{"title":"使用多面体分析自动化异构系统中的数据管理","authors":"V. Vassiliadis, C. Antonopoulos, George Zindros","doi":"10.1145/2801948.2801957","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a framework which automates the task of data management for OpenCL programs across multiple devices of a heterogeneous system. Our approach uses compile-time analysis, based on the polyhedral model, to associate computations with the data they consume / produce. The results of the analysis are then used by a runtime system which automates the task of data management. Beyond alleviating the programmer from the burden of data management, our framework enables partitioning computations to all computational devices of heterogeneous systems according to the computational power and memory capacity of each device, thus facilitating the exploitation of all computational and memory resources of the system. We evaluate our approach on a system containing a multi-core CPU and 4 GPUs, using a set of OpenCL applications and benchmarks. We find that our framework allows the transparent utilization of all heterogeneous resources with negligible overhead (1.24% on average over hand-mapped to the target system versions of the codes). At the same time, it enables the execution of problem sizes which could not be executed on homogeneous, or less complex heterogeneous systems, due to their high computational and memory requirements.","PeriodicalId":305252,"journal":{"name":"Proceedings of the 19th Panhellenic Conference on Informatics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automating data management in heterogeneous systems using polyhedral analysis\",\"authors\":\"V. Vassiliadis, C. Antonopoulos, George Zindros\",\"doi\":\"10.1145/2801948.2801957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a framework which automates the task of data management for OpenCL programs across multiple devices of a heterogeneous system. Our approach uses compile-time analysis, based on the polyhedral model, to associate computations with the data they consume / produce. The results of the analysis are then used by a runtime system which automates the task of data management. Beyond alleviating the programmer from the burden of data management, our framework enables partitioning computations to all computational devices of heterogeneous systems according to the computational power and memory capacity of each device, thus facilitating the exploitation of all computational and memory resources of the system. We evaluate our approach on a system containing a multi-core CPU and 4 GPUs, using a set of OpenCL applications and benchmarks. We find that our framework allows the transparent utilization of all heterogeneous resources with negligible overhead (1.24% on average over hand-mapped to the target system versions of the codes). At the same time, it enables the execution of problem sizes which could not be executed on homogeneous, or less complex heterogeneous systems, due to their high computational and memory requirements.\",\"PeriodicalId\":305252,\"journal\":{\"name\":\"Proceedings of the 19th Panhellenic Conference on Informatics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th Panhellenic Conference on Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2801948.2801957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Panhellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2801948.2801957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们介绍了一个框架,它可以在异构系统的多个设备上实现OpenCL程序数据管理任务的自动化。我们的方法使用基于多面体模型的编译时分析,将计算与它们消耗/产生的数据关联起来。分析的结果随后由运行时系统使用,该系统自动执行数据管理任务。除了减轻程序员的数据管理负担外,我们的框架还可以根据每个设备的计算能力和内存容量将计算划分到异构系统的所有计算设备,从而促进系统所有计算和内存资源的利用。我们使用一组OpenCL应用程序和基准测试,在一个包含多核CPU和4个gpu的系统上评估我们的方法。我们发现,我们的框架允许透明地利用所有异构资源,开销可以忽略不计(手工映射到代码的目标系统版本的平均1.24%)。与此同时,它支持在同构或不太复杂的异构系统上执行由于高计算和内存需求而无法执行的问题规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automating data management in heterogeneous systems using polyhedral analysis
In this paper we introduce a framework which automates the task of data management for OpenCL programs across multiple devices of a heterogeneous system. Our approach uses compile-time analysis, based on the polyhedral model, to associate computations with the data they consume / produce. The results of the analysis are then used by a runtime system which automates the task of data management. Beyond alleviating the programmer from the burden of data management, our framework enables partitioning computations to all computational devices of heterogeneous systems according to the computational power and memory capacity of each device, thus facilitating the exploitation of all computational and memory resources of the system. We evaluate our approach on a system containing a multi-core CPU and 4 GPUs, using a set of OpenCL applications and benchmarks. We find that our framework allows the transparent utilization of all heterogeneous resources with negligible overhead (1.24% on average over hand-mapped to the target system versions of the codes). At the same time, it enables the execution of problem sizes which could not be executed on homogeneous, or less complex heterogeneous systems, due to their high computational and memory requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信