流式图的顶点分割增强

Hooman Peiro Sajjad, A. H. Payberah, Fatemeh Rahimian, Vladimir Vlassov, Seif Haridi
{"title":"流式图的顶点分割增强","authors":"Hooman Peiro Sajjad, A. H. Payberah, Fatemeh Rahimian, Vladimir Vlassov, Seif Haridi","doi":"10.1109/BigDataCongress.2016.10","DOIUrl":null,"url":null,"abstract":"While the algorithms for streaming graph partitioning are proved promising, they fall short of creating timely partitions when applied on large graphs. For example, it takes 415 seconds for a state-of-the-art partitioner to work on a social network graph with 117 millions edges. We introduce an efficient platform for boosting streaming graph partitioning algorithms. Our solution, called HoVerCut, is Horizontally and Vertically scalable. That is, it can run as a multi-threaded process on a single machine, or as a distributed partitioner across multiple machines. Our evaluations, on both real-world and synthetic graphs, show that HoVerCut speeds up the process significantly without degrading the quality of partitioning. For example, HoVerCut partitions the aforementioned social network graph with 117 millions edges in 11 seconds that is about 37 times faster.","PeriodicalId":407471,"journal":{"name":"2016 IEEE International Congress on Big Data (BigData Congress)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Boosting Vertex-Cut Partitioning for Streaming Graphs\",\"authors\":\"Hooman Peiro Sajjad, A. H. Payberah, Fatemeh Rahimian, Vladimir Vlassov, Seif Haridi\",\"doi\":\"10.1109/BigDataCongress.2016.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the algorithms for streaming graph partitioning are proved promising, they fall short of creating timely partitions when applied on large graphs. For example, it takes 415 seconds for a state-of-the-art partitioner to work on a social network graph with 117 millions edges. We introduce an efficient platform for boosting streaming graph partitioning algorithms. Our solution, called HoVerCut, is Horizontally and Vertically scalable. That is, it can run as a multi-threaded process on a single machine, or as a distributed partitioner across multiple machines. Our evaluations, on both real-world and synthetic graphs, show that HoVerCut speeds up the process significantly without degrading the quality of partitioning. For example, HoVerCut partitions the aforementioned social network graph with 117 millions edges in 11 seconds that is about 37 times faster.\",\"PeriodicalId\":407471,\"journal\":{\"name\":\"2016 IEEE International Congress on Big Data (BigData Congress)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Congress on Big Data (BigData Congress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2016.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2016.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

虽然流式图分区算法被证明是有前途的,但当应用于大型图时,它们无法及时创建分区。例如,最先进的分区器需要415秒才能处理一个有1.17亿个边的社交网络图。我们介绍了一个高效的平台来增强流图划分算法。我们的解决方案叫做HoVerCut,是水平和垂直可伸缩的。也就是说,它可以作为单个机器上的多线程进程运行,也可以作为跨多台机器的分布式分区程序运行。我们对真实世界和合成图的评估表明,HoVerCut在不降低分区质量的情况下显著加快了这一过程。例如,HoVerCut在11秒内用1.17亿个边分割了前面提到的社交网络图,速度大约快了37倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting Vertex-Cut Partitioning for Streaming Graphs
While the algorithms for streaming graph partitioning are proved promising, they fall short of creating timely partitions when applied on large graphs. For example, it takes 415 seconds for a state-of-the-art partitioner to work on a social network graph with 117 millions edges. We introduce an efficient platform for boosting streaming graph partitioning algorithms. Our solution, called HoVerCut, is Horizontally and Vertically scalable. That is, it can run as a multi-threaded process on a single machine, or as a distributed partitioner across multiple machines. Our evaluations, on both real-world and synthetic graphs, show that HoVerCut speeds up the process significantly without degrading the quality of partitioning. For example, HoVerCut partitions the aforementioned social network graph with 117 millions edges in 11 seconds that is about 37 times faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信