使用稀疏图码计算O(k log n)样本复杂度的k-稀疏n-长度DFT的鲁棒R-FFAST框架

S. Pawar, K. Ramchandran
{"title":"使用稀疏图码计算O(k log n)样本复杂度的k-稀疏n-长度DFT的鲁棒R-FFAST框架","authors":"S. Pawar, K. Ramchandran","doi":"10.1109/ISIT.2014.6875154","DOIUrl":null,"url":null,"abstract":"The Fast Fourier Transform (FFT) is the most efficiently known way to compute the Discrete Fourier Transform (DFT) of an arbitrary n-length signal, and has a computational complexity of O(n log n). If the DFT X⃗ of the signal x⃗ has only k non-zero coefficients (where k <; n), can we do better? In [1], we presented a novel FFAST (Fast Fourier Aliasing-based Sparse Transform) algorithm that cleverly induces sparse graph codes in the DFT domain, via a Chinese-Remainder-Theorem (CRT)-guided sub-sampling operation of the time-domain samples. The resulting sparse graph code is then exploited to devise a simple and fast iterative onion-peeling style decoder that computes an n length DFT of a signal using only O(k) time-domain samples and O(k log k) computations, in the absence of any noise. In this paper, we extend the FFAST framework of [1] to the case where the time-domain samples are corrupted by white Gaussian noise. In particular, we show that the extended noise robust algorithm R-FFAST computes an n-length k-sparse DFT X⃗ using O(k log n)1 noise-corrupted time-domain samples, in O(n log n) computations2. While our theoretical results are for signals with a uniformly random support of the non-zero DFT coefficients and additive white Gaussian noise, we provide simulation results which demonstrates that the R-FFAST algorithm performs well even for signals like MR images, that have an approximately sparse Fourier spectrum with a non-uniform support for the dominant DFT coefficients.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A robust R-FFAST framework for computing a k-sparse n-length DFT in O(k log n) sample complexity using sparse-graph codes\",\"authors\":\"S. Pawar, K. Ramchandran\",\"doi\":\"10.1109/ISIT.2014.6875154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fast Fourier Transform (FFT) is the most efficiently known way to compute the Discrete Fourier Transform (DFT) of an arbitrary n-length signal, and has a computational complexity of O(n log n). If the DFT X⃗ of the signal x⃗ has only k non-zero coefficients (where k <; n), can we do better? In [1], we presented a novel FFAST (Fast Fourier Aliasing-based Sparse Transform) algorithm that cleverly induces sparse graph codes in the DFT domain, via a Chinese-Remainder-Theorem (CRT)-guided sub-sampling operation of the time-domain samples. The resulting sparse graph code is then exploited to devise a simple and fast iterative onion-peeling style decoder that computes an n length DFT of a signal using only O(k) time-domain samples and O(k log k) computations, in the absence of any noise. In this paper, we extend the FFAST framework of [1] to the case where the time-domain samples are corrupted by white Gaussian noise. In particular, we show that the extended noise robust algorithm R-FFAST computes an n-length k-sparse DFT X⃗ using O(k log n)1 noise-corrupted time-domain samples, in O(n log n) computations2. While our theoretical results are for signals with a uniformly random support of the non-zero DFT coefficients and additive white Gaussian noise, we provide simulation results which demonstrates that the R-FFAST algorithm performs well even for signals like MR images, that have an approximately sparse Fourier spectrum with a non-uniform support for the dominant DFT coefficients.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

快速傅里叶变换(FFT)是计算任意n长度信号的离散傅里叶变换(DFT)的最有效的已知方法,其计算复杂度为O(n log n)。如果信号X的DFT X∈只有k个非零系数(其中k <;N)我们能做得更好吗?在[1]中,我们提出了一种新的基于快速傅立叶混叠的稀疏变换(FFAST)算法,该算法通过中国剩余定理(CRT)指导的时域样本子采样操作,巧妙地在DFT域中诱导稀疏图码。然后利用所得到的稀疏图代码来设计一个简单而快速的迭代洋葱剥离式解码器,该解码器仅使用O(k)个时域样本和O(k log k)个计算来计算信号的n长度DFT,并且没有任何噪声。在本文中,我们将[1]的FFAST框架扩展到时域样本被高斯白噪声破坏的情况。特别地,我们证明了扩展的噪声鲁棒算法R-FFAST在O(n log n)次计算中使用O(k log n)1个噪声损坏的时域样本计算一个n长度的k-稀疏DFT X¹。虽然我们的理论结果适用于具有非零DFT系数和加性高斯白噪声的均匀随机支持的信号,但我们提供的仿真结果表明,R-FFAST算法即使对于MR图像这样的信号也表现良好,这些信号具有近似稀疏的傅立叶谱,并且对主要DFT系数具有非均匀支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust R-FFAST framework for computing a k-sparse n-length DFT in O(k log n) sample complexity using sparse-graph codes
The Fast Fourier Transform (FFT) is the most efficiently known way to compute the Discrete Fourier Transform (DFT) of an arbitrary n-length signal, and has a computational complexity of O(n log n). If the DFT X⃗ of the signal x⃗ has only k non-zero coefficients (where k <; n), can we do better? In [1], we presented a novel FFAST (Fast Fourier Aliasing-based Sparse Transform) algorithm that cleverly induces sparse graph codes in the DFT domain, via a Chinese-Remainder-Theorem (CRT)-guided sub-sampling operation of the time-domain samples. The resulting sparse graph code is then exploited to devise a simple and fast iterative onion-peeling style decoder that computes an n length DFT of a signal using only O(k) time-domain samples and O(k log k) computations, in the absence of any noise. In this paper, we extend the FFAST framework of [1] to the case where the time-domain samples are corrupted by white Gaussian noise. In particular, we show that the extended noise robust algorithm R-FFAST computes an n-length k-sparse DFT X⃗ using O(k log n)1 noise-corrupted time-domain samples, in O(n log n) computations2. While our theoretical results are for signals with a uniformly random support of the non-zero DFT coefficients and additive white Gaussian noise, we provide simulation results which demonstrates that the R-FFAST algorithm performs well even for signals like MR images, that have an approximately sparse Fourier spectrum with a non-uniform support for the dominant DFT coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信