{"title":"空间飞行器多质量燃料晃动动力学非线性控制","authors":"M. Reyhanoglu, J. Hervas","doi":"10.1109/RAST.2011.5966834","DOIUrl":null,"url":null,"abstract":"This paper studies the maneuvering control problem for space vehicles with fuel slosh dynamics in a zero gravity environment. Multi-mass-spring models are considered for the characterization of the most prominent sloshing modes. The control objective, as is typical for spacecraft maneuvering problems, is to control the translational velocity vector and the attitude of the spacecraft, while attenuating the sloshing modes characterizing the internal dynamics. Subsequently, a nonlinear mathematical model that reflects all of these assumptions is derived. Finally, a Lyapunov-based nonlinear feedback controller is designed to achieve this control objective. A simulation example is included to illustrate the effectiveness of the controller.","PeriodicalId":285002,"journal":{"name":"Proceedings of 5th International Conference on Recent Advances in Space Technologies - RAST2011","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Nonlinear control of space vehicles with multi-mass fuel slosh dynamics\",\"authors\":\"M. Reyhanoglu, J. Hervas\",\"doi\":\"10.1109/RAST.2011.5966834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the maneuvering control problem for space vehicles with fuel slosh dynamics in a zero gravity environment. Multi-mass-spring models are considered for the characterization of the most prominent sloshing modes. The control objective, as is typical for spacecraft maneuvering problems, is to control the translational velocity vector and the attitude of the spacecraft, while attenuating the sloshing modes characterizing the internal dynamics. Subsequently, a nonlinear mathematical model that reflects all of these assumptions is derived. Finally, a Lyapunov-based nonlinear feedback controller is designed to achieve this control objective. A simulation example is included to illustrate the effectiveness of the controller.\",\"PeriodicalId\":285002,\"journal\":{\"name\":\"Proceedings of 5th International Conference on Recent Advances in Space Technologies - RAST2011\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 5th International Conference on Recent Advances in Space Technologies - RAST2011\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAST.2011.5966834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 5th International Conference on Recent Advances in Space Technologies - RAST2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAST.2011.5966834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear control of space vehicles with multi-mass fuel slosh dynamics
This paper studies the maneuvering control problem for space vehicles with fuel slosh dynamics in a zero gravity environment. Multi-mass-spring models are considered for the characterization of the most prominent sloshing modes. The control objective, as is typical for spacecraft maneuvering problems, is to control the translational velocity vector and the attitude of the spacecraft, while attenuating the sloshing modes characterizing the internal dynamics. Subsequently, a nonlinear mathematical model that reflects all of these assumptions is derived. Finally, a Lyapunov-based nonlinear feedback controller is designed to achieve this control objective. A simulation example is included to illustrate the effectiveness of the controller.