基于对角递归神经网络的短期负荷预测

K.Y. Lee, T. Choi, C. Ku, J.H. Park
{"title":"基于对角递归神经网络的短期负荷预测","authors":"K.Y. Lee, T. Choi, C. Ku, J.H. Park","doi":"10.1109/ANN.1993.264286","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for short term load forecasting using a diagonal recurrent neural network with an adaptive learning rate. The fully connected recurrent neural network (FRNN), where all neurons are coupled to one another, is difficult to train and to converge in a short time. The DRNN is a modified model of FRNN. It requires fewer weights than FRNN and rapid convergence has been demonstrated. A dynamic backpropagation algorithm coupled with an adaptive learning rate guarantees even faster convergence. To consider the effect of seasonal load variation on the accuracy of the proposed forecasting model, forecasting accuracy is evaluated throughout a whole year. Simulation results show that the forecast accuracy is improved.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Short-term load forecasting using diagonal recurrent neural network\",\"authors\":\"K.Y. Lee, T. Choi, C. Ku, J.H. Park\",\"doi\":\"10.1109/ANN.1993.264286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach for short term load forecasting using a diagonal recurrent neural network with an adaptive learning rate. The fully connected recurrent neural network (FRNN), where all neurons are coupled to one another, is difficult to train and to converge in a short time. The DRNN is a modified model of FRNN. It requires fewer weights than FRNN and rapid convergence has been demonstrated. A dynamic backpropagation algorithm coupled with an adaptive learning rate guarantees even faster convergence. To consider the effect of seasonal load variation on the accuracy of the proposed forecasting model, forecasting accuracy is evaluated throughout a whole year. Simulation results show that the forecast accuracy is improved.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文提出了一种利用自适应学习率的对角递归神经网络进行短期负荷预测的新方法。全连接递归神经网络(FRNN)的所有神经元都是相互耦合的,其训练难度大,且难以在短时间内收敛。DRNN是对FRNN的改进模型。它比FRNN需要更少的权重,收敛速度快。动态反向传播算法与自适应学习率相结合,保证更快的收敛速度。为了考虑季节负荷变化对预测模型精度的影响,对预测精度进行了全年评估。仿真结果表明,该方法提高了预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term load forecasting using diagonal recurrent neural network
This paper presents a new approach for short term load forecasting using a diagonal recurrent neural network with an adaptive learning rate. The fully connected recurrent neural network (FRNN), where all neurons are coupled to one another, is difficult to train and to converge in a short time. The DRNN is a modified model of FRNN. It requires fewer weights than FRNN and rapid convergence has been demonstrated. A dynamic backpropagation algorithm coupled with an adaptive learning rate guarantees even faster convergence. To consider the effect of seasonal load variation on the accuracy of the proposed forecasting model, forecasting accuracy is evaluated throughout a whole year. Simulation results show that the forecast accuracy is improved.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信