从另一个角度看湍流中的雷诺应力

Taewoo Lee
{"title":"从另一个角度看湍流中的雷诺应力","authors":"Taewoo Lee","doi":"10.1115/IMECE2018-86870","DOIUrl":null,"url":null,"abstract":"We present a unique method for solving for the Reynolds stress in turbulent canonical flows, based on the momentum balance for a control volume moving at the local mean velocity. A differential transform converts this momentum balance to a closed form, with the longitudinal component, u’2 and the mean velocity, U as its constituents. Validations with experimental and computational data in simple geometries show quite good results. Using this perspective, determination of the Reynolds stress in terms of computable turbulence parameters is rendered possible.","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Reynolds Stress in Turbulence From an Alternate Perspective\",\"authors\":\"Taewoo Lee\",\"doi\":\"10.1115/IMECE2018-86870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a unique method for solving for the Reynolds stress in turbulent canonical flows, based on the momentum balance for a control volume moving at the local mean velocity. A differential transform converts this momentum balance to a closed form, with the longitudinal component, u’2 and the mean velocity, U as its constituents. Validations with experimental and computational data in simple geometries show quite good results. Using this perspective, determination of the Reynolds stress in terms of computable turbulence parameters is rendered possible.\",\"PeriodicalId\":229616,\"journal\":{\"name\":\"Volume 7: Fluids Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: Fluids Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于以局部平均速度运动的控制体的动量平衡,我们提出了一种独特的求解湍流正则流中雷诺应力的方法。微分变换将这种动量平衡转换为封闭形式,其中纵向分量u ' 2和平均速度u作为其组成部分。用简单几何的实验和计算数据进行验证,得到了很好的结果。从这个角度来看,根据可计算的湍流参数确定雷诺应力是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Reynolds Stress in Turbulence From an Alternate Perspective
We present a unique method for solving for the Reynolds stress in turbulent canonical flows, based on the momentum balance for a control volume moving at the local mean velocity. A differential transform converts this momentum balance to a closed form, with the longitudinal component, u’2 and the mean velocity, U as its constituents. Validations with experimental and computational data in simple geometries show quite good results. Using this perspective, determination of the Reynolds stress in terms of computable turbulence parameters is rendered possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信