{"title":"基于加权主成分分析的连续搅拌釜故障检测方法","authors":"Shanmao Gu, Yunlong Liu, Ni Zhang, Dexin Du","doi":"10.2174/1874155X01509010966","DOIUrl":null,"url":null,"abstract":"Fault detection approach based on principal component analysis (PCA) may perform not well when the process is time-varying, because it can cause unfavorable influence on feature extraction. To solve this problem, a modified PCA which considering variance maximization is proposed, referred to as weighted PCA (WPCA). WPCA can obtain the slow features information of observed data in time-varying system. The monitoring statistical indices are based on WPCA model and their confidence limits are computed by kernel density estimation (KDE). A simulation example on continuous stirred tank reactor (CSTR) show that the proposed method achieves better performance from the perspective of both fault detection rate and fault detection time than conventional PCA model.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fault Detection Approach Based on Weighted Principal ComponentAnalysis Applied to Continuous Stirred Tank Reactor\",\"authors\":\"Shanmao Gu, Yunlong Liu, Ni Zhang, Dexin Du\",\"doi\":\"10.2174/1874155X01509010966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault detection approach based on principal component analysis (PCA) may perform not well when the process is time-varying, because it can cause unfavorable influence on feature extraction. To solve this problem, a modified PCA which considering variance maximization is proposed, referred to as weighted PCA (WPCA). WPCA can obtain the slow features information of observed data in time-varying system. The monitoring statistical indices are based on WPCA model and their confidence limits are computed by kernel density estimation (KDE). A simulation example on continuous stirred tank reactor (CSTR) show that the proposed method achieves better performance from the perspective of both fault detection rate and fault detection time than conventional PCA model.\",\"PeriodicalId\":267392,\"journal\":{\"name\":\"The Open Mechanical Engineering Journal\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Mechanical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874155X01509010966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Mechanical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874155X01509010966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault Detection Approach Based on Weighted Principal ComponentAnalysis Applied to Continuous Stirred Tank Reactor
Fault detection approach based on principal component analysis (PCA) may perform not well when the process is time-varying, because it can cause unfavorable influence on feature extraction. To solve this problem, a modified PCA which considering variance maximization is proposed, referred to as weighted PCA (WPCA). WPCA can obtain the slow features information of observed data in time-varying system. The monitoring statistical indices are based on WPCA model and their confidence limits are computed by kernel density estimation (KDE). A simulation example on continuous stirred tank reactor (CSTR) show that the proposed method achieves better performance from the perspective of both fault detection rate and fault detection time than conventional PCA model.