混合扰动下闭轨道分支空间的周期解

L. Deng, Ruiping Huang, Wenhui Hao, Qingzheng Xu
{"title":"混合扰动下闭轨道分支空间的周期解","authors":"L. Deng, Ruiping Huang, Wenhui Hao, Qingzheng Xu","doi":"10.1145/3348400.3348406","DOIUrl":null,"url":null,"abstract":"By combining the means of the center manifold theorem and Planar branching theory, this paper studies the sufficient conditions for general three-dimensional systems to branch out into spatial periodic solutions under mixed perturbations, and obtains two theorems for judging the periodic solutions of general three-dimensional systems branching out from closed orbits, which generalize the results of existing planar systems.","PeriodicalId":297459,"journal":{"name":"Proceedings of the 2019 International Conference on Mathematics, Science and Technology Teaching and Learning - ICMSTTL 2019","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic Solutions of Branched Space from Closed Orbits under Mixed Perturbations\",\"authors\":\"L. Deng, Ruiping Huang, Wenhui Hao, Qingzheng Xu\",\"doi\":\"10.1145/3348400.3348406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By combining the means of the center manifold theorem and Planar branching theory, this paper studies the sufficient conditions for general three-dimensional systems to branch out into spatial periodic solutions under mixed perturbations, and obtains two theorems for judging the periodic solutions of general three-dimensional systems branching out from closed orbits, which generalize the results of existing planar systems.\",\"PeriodicalId\":297459,\"journal\":{\"name\":\"Proceedings of the 2019 International Conference on Mathematics, Science and Technology Teaching and Learning - ICMSTTL 2019\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 International Conference on Mathematics, Science and Technology Teaching and Learning - ICMSTTL 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3348400.3348406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Mathematics, Science and Technology Teaching and Learning - ICMSTTL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3348400.3348406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结合中心流形定理与平面分支理论的方法,研究了一般三维系统在混合扰动下分支出空间周期解的充分条件,得到了一般三维系统从封闭轨道分支出周期解的两个定理,推广了已有平面系统的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic Solutions of Branched Space from Closed Orbits under Mixed Perturbations
By combining the means of the center manifold theorem and Planar branching theory, this paper studies the sufficient conditions for general three-dimensional systems to branch out into spatial periodic solutions under mixed perturbations, and obtains two theorems for judging the periodic solutions of general three-dimensional systems branching out from closed orbits, which generalize the results of existing planar systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信