{"title":"基于频率啁啾梳的可扩展带宽和高精度频谱测量","authors":"M. Lo, Ronit Sohanpal, Zichuan Zhou, Zhixin Liu","doi":"10.1109/IPC53466.2022.9975514","DOIUrl":null,"url":null,"abstract":"A cost-effective scan technique enabling scalable measurement range is presented by injecting a sweep RF signal of 27.5-30 GHz into an electro-optic comb generator. The 10th-order harmonic scans over an extended span (275-300 GHz) where an ultra-narrow (Q >106) resonance is well-resolved with sub-MHz resolution.","PeriodicalId":202839,"journal":{"name":"2022 IEEE Photonics Conference (IPC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Bandwidth and High-Precision Spectral Measurement by Frequency Chirped Comb\",\"authors\":\"M. Lo, Ronit Sohanpal, Zichuan Zhou, Zhixin Liu\",\"doi\":\"10.1109/IPC53466.2022.9975514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cost-effective scan technique enabling scalable measurement range is presented by injecting a sweep RF signal of 27.5-30 GHz into an electro-optic comb generator. The 10th-order harmonic scans over an extended span (275-300 GHz) where an ultra-narrow (Q >106) resonance is well-resolved with sub-MHz resolution.\",\"PeriodicalId\":202839,\"journal\":{\"name\":\"2022 IEEE Photonics Conference (IPC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPC53466.2022.9975514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPC53466.2022.9975514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable Bandwidth and High-Precision Spectral Measurement by Frequency Chirped Comb
A cost-effective scan technique enabling scalable measurement range is presented by injecting a sweep RF signal of 27.5-30 GHz into an electro-optic comb generator. The 10th-order harmonic scans over an extended span (275-300 GHz) where an ultra-narrow (Q >106) resonance is well-resolved with sub-MHz resolution.