用并行求解csp约束简洁证明系统

Jason Li, R. O'Donnell
{"title":"用并行求解csp约束简洁证明系统","authors":"Jason Li, R. O'Donnell","doi":"10.1145/3087556.3087557","DOIUrl":null,"url":null,"abstract":"We show that the basic semidefinite programming relaxation value of any constraint satisfaction problem can be computed in NC; that is, in parallel polylogarithmic time and polynomial work. As a complexity-theoretic consequence we get that \\MIPone[k,c,s] \\subseteq \\PSPACE provided s/c \\leq (.62-o(1))k/2^k, resolving a question of Austrin, H\\aa stad, and Pass. Here \\MIPone[k,c,s] is the class of languages decidable with completeness c and soundness s by an interactive proof system with k provers, each constrained to communicate just 1 bit.","PeriodicalId":162994,"journal":{"name":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bounding Laconic Proof Systems by Solving CSPs in Parallel\",\"authors\":\"Jason Li, R. O'Donnell\",\"doi\":\"10.1145/3087556.3087557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the basic semidefinite programming relaxation value of any constraint satisfaction problem can be computed in NC; that is, in parallel polylogarithmic time and polynomial work. As a complexity-theoretic consequence we get that \\\\MIPone[k,c,s] \\\\subseteq \\\\PSPACE provided s/c \\\\leq (.62-o(1))k/2^k, resolving a question of Austrin, H\\\\aa stad, and Pass. Here \\\\MIPone[k,c,s] is the class of languages decidable with completeness c and soundness s by an interactive proof system with k provers, each constrained to communicate just 1 bit.\",\"PeriodicalId\":162994,\"journal\":{\"name\":\"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3087556.3087557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087556.3087557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

证明了任意约束满足问题的基本半定规划松弛值都可以计算;也就是说,在并行多对数时间和多项式的工作。作为一个复杂性理论的结果,我们得到\MIPone[k,c,s]\subseteq\PSPACE提供了s/c \leq (.62-o(1))k/2^k,解决了奥斯丁、H \aa斯塔德和帕斯的问题。这里\MIPone[k,c,s]是一类语言,可由一个具有k个证明者的交互式证明系统以完备性c和可靠性s来确定,每个证明者被限制只能通信1位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding Laconic Proof Systems by Solving CSPs in Parallel
We show that the basic semidefinite programming relaxation value of any constraint satisfaction problem can be computed in NC; that is, in parallel polylogarithmic time and polynomial work. As a complexity-theoretic consequence we get that \MIPone[k,c,s] \subseteq \PSPACE provided s/c \leq (.62-o(1))k/2^k, resolving a question of Austrin, H\aa stad, and Pass. Here \MIPone[k,c,s] is the class of languages decidable with completeness c and soundness s by an interactive proof system with k provers, each constrained to communicate just 1 bit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信