尿沉积物中颗粒的自动分类

Lin Chen, Bin Fang, Yi Wang, Guang-Zhou Lu, Ji-Ye Qian, Chunyan Li
{"title":"尿沉积物中颗粒的自动分类","authors":"Lin Chen, Bin Fang, Yi Wang, Guang-Zhou Lu, Ji-Ye Qian, Chunyan Li","doi":"10.1109/ICWAPR.2009.5207416","DOIUrl":null,"url":null,"abstract":"The particles in urinary microscopic images are hard to classify because of noisy background and strong variability of objects in shape and texture. In order to overcome these difficulties, firstly, a new method of texture feature extraction using the distance mapping based on a set of local grayvalue invariants is introduced and the feature is robust to the shift and rotation. Secondly, we reduce the high dimensional feature into a lower dimensional space using PCA. Thirdly, a multiclass SVM is applied to classify 5 categories of particles after trained them reasonably. Finally the experiment results achieve an average of accuracy of 90.02% and a F1 value of 90.44%.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated classfication of particles in urinary sediment\",\"authors\":\"Lin Chen, Bin Fang, Yi Wang, Guang-Zhou Lu, Ji-Ye Qian, Chunyan Li\",\"doi\":\"10.1109/ICWAPR.2009.5207416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The particles in urinary microscopic images are hard to classify because of noisy background and strong variability of objects in shape and texture. In order to overcome these difficulties, firstly, a new method of texture feature extraction using the distance mapping based on a set of local grayvalue invariants is introduced and the feature is robust to the shift and rotation. Secondly, we reduce the high dimensional feature into a lower dimensional space using PCA. Thirdly, a multiclass SVM is applied to classify 5 categories of particles after trained them reasonably. Finally the experiment results achieve an average of accuracy of 90.02% and a F1 value of 90.44%.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于背景噪声大、物体形状和纹理变化大,泌尿显微图像中的颗粒难以分类。为了克服这些困难,首先提出了一种基于局部灰度不变量集的距离映射纹理特征提取方法,该方法对移动和旋转具有鲁棒性;其次,利用主成分分析法将高维特征降维到低维空间。第三,对5类粒子进行合理训练后,应用多类支持向量机对其进行分类。实验结果平均精度为90.02%,F1值为90.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated classfication of particles in urinary sediment
The particles in urinary microscopic images are hard to classify because of noisy background and strong variability of objects in shape and texture. In order to overcome these difficulties, firstly, a new method of texture feature extraction using the distance mapping based on a set of local grayvalue invariants is introduced and the feature is robust to the shift and rotation. Secondly, we reduce the high dimensional feature into a lower dimensional space using PCA. Thirdly, a multiclass SVM is applied to classify 5 categories of particles after trained them reasonably. Finally the experiment results achieve an average of accuracy of 90.02% and a F1 value of 90.44%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信