标准化的互信息是比较社区检测方法的公平衡量标准吗?

Alessia Amelio, C. Pizzuti
{"title":"标准化的互信息是比较社区检测方法的公平衡量标准吗?","authors":"Alessia Amelio, C. Pizzuti","doi":"10.1145/2808797.2809344","DOIUrl":null,"url":null,"abstract":"Normalized mutual information (NMI) is a widely used measure to compare community detection methods. Recently, however, the need of adjustment for information theoretic based measures has been argued because of their tendency in choosing clustering solutions with more communities. In this paper an experimental evaluation is performed to investigate this problem, and an adjustment that scales the values of NMI is proposed. Experiments on synthetic generated networks highlight the unbiased behavior of scaled NMI.","PeriodicalId":371988,"journal":{"name":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Is normalized mutual information a fair measure for comparing community detection methods?\",\"authors\":\"Alessia Amelio, C. Pizzuti\",\"doi\":\"10.1145/2808797.2809344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Normalized mutual information (NMI) is a widely used measure to compare community detection methods. Recently, however, the need of adjustment for information theoretic based measures has been argued because of their tendency in choosing clustering solutions with more communities. In this paper an experimental evaluation is performed to investigate this problem, and an adjustment that scales the values of NMI is proposed. Experiments on synthetic generated networks highlight the unbiased behavior of scaled NMI.\",\"PeriodicalId\":371988,\"journal\":{\"name\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808797.2809344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808797.2809344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

摘要

归一化互信息(NMI)是一种广泛用于比较社区检测方法的度量。然而,近年来,由于基于信息理论的度量倾向于选择具有更多社区的聚类解决方案,因此有必要对其进行调整。本文对该问题进行了实验评估,并提出了一种调整NMI值的方法。在合成生成网络上的实验表明,尺度NMI具有无偏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is normalized mutual information a fair measure for comparing community detection methods?
Normalized mutual information (NMI) is a widely used measure to compare community detection methods. Recently, however, the need of adjustment for information theoretic based measures has been argued because of their tendency in choosing clustering solutions with more communities. In this paper an experimental evaluation is performed to investigate this problem, and an adjustment that scales the values of NMI is proposed. Experiments on synthetic generated networks highlight the unbiased behavior of scaled NMI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信