{"title":"标准化的互信息是比较社区检测方法的公平衡量标准吗?","authors":"Alessia Amelio, C. Pizzuti","doi":"10.1145/2808797.2809344","DOIUrl":null,"url":null,"abstract":"Normalized mutual information (NMI) is a widely used measure to compare community detection methods. Recently, however, the need of adjustment for information theoretic based measures has been argued because of their tendency in choosing clustering solutions with more communities. In this paper an experimental evaluation is performed to investigate this problem, and an adjustment that scales the values of NMI is proposed. Experiments on synthetic generated networks highlight the unbiased behavior of scaled NMI.","PeriodicalId":371988,"journal":{"name":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Is normalized mutual information a fair measure for comparing community detection methods?\",\"authors\":\"Alessia Amelio, C. Pizzuti\",\"doi\":\"10.1145/2808797.2809344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Normalized mutual information (NMI) is a widely used measure to compare community detection methods. Recently, however, the need of adjustment for information theoretic based measures has been argued because of their tendency in choosing clustering solutions with more communities. In this paper an experimental evaluation is performed to investigate this problem, and an adjustment that scales the values of NMI is proposed. Experiments on synthetic generated networks highlight the unbiased behavior of scaled NMI.\",\"PeriodicalId\":371988,\"journal\":{\"name\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808797.2809344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808797.2809344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Is normalized mutual information a fair measure for comparing community detection methods?
Normalized mutual information (NMI) is a widely used measure to compare community detection methods. Recently, however, the need of adjustment for information theoretic based measures has been argued because of their tendency in choosing clustering solutions with more communities. In this paper an experimental evaluation is performed to investigate this problem, and an adjustment that scales the values of NMI is proposed. Experiments on synthetic generated networks highlight the unbiased behavior of scaled NMI.