公共恶意软件分析服务的指纹识别研究

Log. J. IGPL Pub Date : 2019-12-07 DOI:10.1093/jigpal/jzz050
Alvaro Botas, R. Rodríguez, Vicente Matellán Olivera, Juan Felipe García Sierra, M. T. Trobajo, M. Carriegos
{"title":"公共恶意软件分析服务的指纹识别研究","authors":"Alvaro Botas, R. Rodríguez, Vicente Matellán Olivera, Juan Felipe García Sierra, M. T. Trobajo, M. Carriegos","doi":"10.1093/jigpal/jzz050","DOIUrl":null,"url":null,"abstract":"\n Automatic public malware analysis services (PMAS, e.g. VirusTotal, Jotti or ClamAV, to name a few) provide controlled, isolated and virtual environments to analyse malicious software (malware) samples. Unfortunately, malware is currently incorporating techniques to recognize execution onto a virtual or sandbox environment; when an analysis environment is detected, malware behaves as a benign application or even shows no activity. In this work, we present an empirical study and characterization of automatic PMAS, considering 26 different services. We also show a set of features that allow to easily fingerprint these services as analysis environments; the lower the unlikeability of these features, the easier for us (and thus for malware) to fingerprint the analysis service they belong to. Finally, we propose a method for these analysis services to counter or at least mitigate our proposal.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Fingerprinting of Public Malware Analysis Services\",\"authors\":\"Alvaro Botas, R. Rodríguez, Vicente Matellán Olivera, Juan Felipe García Sierra, M. T. Trobajo, M. Carriegos\",\"doi\":\"10.1093/jigpal/jzz050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Automatic public malware analysis services (PMAS, e.g. VirusTotal, Jotti or ClamAV, to name a few) provide controlled, isolated and virtual environments to analyse malicious software (malware) samples. Unfortunately, malware is currently incorporating techniques to recognize execution onto a virtual or sandbox environment; when an analysis environment is detected, malware behaves as a benign application or even shows no activity. In this work, we present an empirical study and characterization of automatic PMAS, considering 26 different services. We also show a set of features that allow to easily fingerprint these services as analysis environments; the lower the unlikeability of these features, the easier for us (and thus for malware) to fingerprint the analysis service they belong to. Finally, we propose a method for these analysis services to counter or at least mitigate our proposal.\",\"PeriodicalId\":304915,\"journal\":{\"name\":\"Log. J. IGPL\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. J. IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzz050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzz050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动公共恶意软件分析服务(PMAS,例如VirusTotal, Jotti或ClamAV,仅举几例)提供受控的,隔离的和虚拟的环境来分析恶意软件(恶意软件)样本。不幸的是,恶意软件目前正在结合技术来识别在虚拟或沙盒环境中的执行;当检测到分析环境时,恶意软件表现为良性应用程序,甚至不显示任何活动。在这项工作中,我们提出了一个实证研究和特征的自动PMAS,考虑了26种不同的服务。我们还展示了一组功能,可以轻松地将这些服务作为分析环境进行识别;这些特征的不受欢迎程度越低,我们(以及恶意软件)就越容易找到它们所属的分析服务。最后,我们为这些分析服务提出了一种方法来对抗或至少减轻我们的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Fingerprinting of Public Malware Analysis Services
Automatic public malware analysis services (PMAS, e.g. VirusTotal, Jotti or ClamAV, to name a few) provide controlled, isolated and virtual environments to analyse malicious software (malware) samples. Unfortunately, malware is currently incorporating techniques to recognize execution onto a virtual or sandbox environment; when an analysis environment is detected, malware behaves as a benign application or even shows no activity. In this work, we present an empirical study and characterization of automatic PMAS, considering 26 different services. We also show a set of features that allow to easily fingerprint these services as analysis environments; the lower the unlikeability of these features, the easier for us (and thus for malware) to fingerprint the analysis service they belong to. Finally, we propose a method for these analysis services to counter or at least mitigate our proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信