一种解决多式联运经济负荷调度问题的新方法

Xian Liu
{"title":"一种解决多式联运经济负荷调度问题的新方法","authors":"Xian Liu","doi":"10.1109/PES.2007.385497","DOIUrl":null,"url":null,"abstract":"This paper introduces a new global optimization method, the filled function method (FFM), to solve the multimodal economic load dispatch (ELD) problem. In contrast to the genetic algorithm (GA), which is a probabilistic approach and has been a choice to solve the ELD problem, the FFM is a deterministic approach. In the present work, we implement the FFM and solve a generic ELD problem. The optimization results are reported and the performance is satisfactory. We expect that the FFM will receive more attention from the power system engineering.","PeriodicalId":380613,"journal":{"name":"2007 IEEE Power Engineering Society General Meeting","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Approach for Solving the Multimodal Economic Load Dispatch Problem\",\"authors\":\"Xian Liu\",\"doi\":\"10.1109/PES.2007.385497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new global optimization method, the filled function method (FFM), to solve the multimodal economic load dispatch (ELD) problem. In contrast to the genetic algorithm (GA), which is a probabilistic approach and has been a choice to solve the ELD problem, the FFM is a deterministic approach. In the present work, we implement the FFM and solve a generic ELD problem. The optimization results are reported and the performance is satisfactory. We expect that the FFM will receive more attention from the power system engineering.\",\"PeriodicalId\":380613,\"journal\":{\"name\":\"2007 IEEE Power Engineering Society General Meeting\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Power Engineering Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PES.2007.385497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Power Engineering Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2007.385497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种新的全局优化方法——填充函数法(FFM)来解决多式联运经济负荷调度问题。遗传算法(GA)是一种概率方法,是解决ELD问题的一种选择,而FFM是一种确定性方法。在本工作中,我们实现了FFM并解决了一个通用的ELD问题。给出了优化结果,取得了满意的效果。我们期待FFM在电力系统工程中得到更多的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Approach for Solving the Multimodal Economic Load Dispatch Problem
This paper introduces a new global optimization method, the filled function method (FFM), to solve the multimodal economic load dispatch (ELD) problem. In contrast to the genetic algorithm (GA), which is a probabilistic approach and has been a choice to solve the ELD problem, the FFM is a deterministic approach. In the present work, we implement the FFM and solve a generic ELD problem. The optimization results are reported and the performance is satisfactory. We expect that the FFM will receive more attention from the power system engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信