线性细胞神经网络的数字仿真研究

N. Yildiz, V. Tavsanoglu
{"title":"线性细胞神经网络的数字仿真研究","authors":"N. Yildiz, V. Tavsanoglu","doi":"10.1109/ECCTD.2007.4529643","DOIUrl":null,"url":null,"abstract":"Cellular nonlinear/neural networks (CNN's) are one of the analog systems that is hard to emulate or simulate on digital systems. It is known that CNN systems are linear for Gabor-type spatial filters. Although it is possible to represent the state equations of the discrete CNN in matrix notation, it is almost impossible to implement the huge state matrix on a digital system without optimization. In this paper some well known linear equation solving methods are optimized for CNN and required computational powers and memories are compared.","PeriodicalId":445822,"journal":{"name":"2007 18th European Conference on Circuit Theory and Design","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the digital simulation of linear cellular neural networks\",\"authors\":\"N. Yildiz, V. Tavsanoglu\",\"doi\":\"10.1109/ECCTD.2007.4529643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular nonlinear/neural networks (CNN's) are one of the analog systems that is hard to emulate or simulate on digital systems. It is known that CNN systems are linear for Gabor-type spatial filters. Although it is possible to represent the state equations of the discrete CNN in matrix notation, it is almost impossible to implement the huge state matrix on a digital system without optimization. In this paper some well known linear equation solving methods are optimized for CNN and required computational powers and memories are compared.\",\"PeriodicalId\":445822,\"journal\":{\"name\":\"2007 18th European Conference on Circuit Theory and Design\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 18th European Conference on Circuit Theory and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCTD.2007.4529643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 18th European Conference on Circuit Theory and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2007.4529643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞非线性/神经网络(CNN)是一种难以在数字系统上进行仿真的模拟系统。已知CNN系统对于gabor型空间滤波器是线性的。虽然可以用矩阵表示离散CNN的状态方程,但在没有优化的数字系统上实现巨大的状态矩阵几乎是不可能的。本文对几种已知的线性方程求解方法进行了优化,并对CNN所需的计算能力和内存进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the digital simulation of linear cellular neural networks
Cellular nonlinear/neural networks (CNN's) are one of the analog systems that is hard to emulate or simulate on digital systems. It is known that CNN systems are linear for Gabor-type spatial filters. Although it is possible to represent the state equations of the discrete CNN in matrix notation, it is almost impossible to implement the huge state matrix on a digital system without optimization. In this paper some well known linear equation solving methods are optimized for CNN and required computational powers and memories are compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信