基于瞬时噪声谱估计的谱减法声源分离

K. Ozawa, M. Morise, S. Sakamoto, Kanji Watanabe
{"title":"基于瞬时噪声谱估计的谱减法声源分离","authors":"K. Ozawa, M. Morise, S. Sakamoto, Kanji Watanabe","doi":"10.1109/ICSAI48974.2019.9010477","DOIUrl":null,"url":null,"abstract":"In our previous paper, we proposed a sound source separation method using the two-dimensional fast Fourier transform (2D FFT) of a spatio-temporal sound pressure distribution (STSPD) image that is composed from the outputs of a microphone array. In an STSPD image, vertical stripes are created for a target sound arriving from the perpendicular direction to the array; therefore, its spectral components are concentrated on the spatial direct current (DC) components in the 2D amplitude spectrum. In that study, we estimated the noise DC amplitudes using a deep neural network (DNN), then subtracted them from the observed spectrum to suppress the noise. However, the performance of noise suppression can be improved further. In this study, we estimate the noise DC components theoretically instead of empirically using a DNN. We improved the performance successfully.","PeriodicalId":270809,"journal":{"name":"2019 6th International Conference on Systems and Informatics (ICSAI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sound Source Separation by Spectral Subtraction Based on Instantaneous Estimation of Noise Spectrum\",\"authors\":\"K. Ozawa, M. Morise, S. Sakamoto, Kanji Watanabe\",\"doi\":\"10.1109/ICSAI48974.2019.9010477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our previous paper, we proposed a sound source separation method using the two-dimensional fast Fourier transform (2D FFT) of a spatio-temporal sound pressure distribution (STSPD) image that is composed from the outputs of a microphone array. In an STSPD image, vertical stripes are created for a target sound arriving from the perpendicular direction to the array; therefore, its spectral components are concentrated on the spatial direct current (DC) components in the 2D amplitude spectrum. In that study, we estimated the noise DC amplitudes using a deep neural network (DNN), then subtracted them from the observed spectrum to suppress the noise. However, the performance of noise suppression can be improved further. In this study, we estimate the noise DC components theoretically instead of empirically using a DNN. We improved the performance successfully.\",\"PeriodicalId\":270809,\"journal\":{\"name\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI48974.2019.9010477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI48974.2019.9010477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在我们之前的论文中,我们提出了一种声源分离方法,该方法使用由麦克风阵列输出组成的时空声压分布(STSPD)图像的二维快速傅立叶变换(2D FFT)。在STSPD图像中,为从垂直方向到达阵列的目标声音创建垂直条纹;因此,其频谱分量集中在二维幅度谱中的空间直流分量上。在该研究中,我们使用深度神经网络(DNN)估计噪声直流幅值,然后从观察到的频谱中减去它们以抑制噪声。但是,噪声抑制性能还可以进一步提高。在本研究中,我们从理论上估计噪声直流分量,而不是经验地使用深度神经网络。我们成功地改进了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sound Source Separation by Spectral Subtraction Based on Instantaneous Estimation of Noise Spectrum
In our previous paper, we proposed a sound source separation method using the two-dimensional fast Fourier transform (2D FFT) of a spatio-temporal sound pressure distribution (STSPD) image that is composed from the outputs of a microphone array. In an STSPD image, vertical stripes are created for a target sound arriving from the perpendicular direction to the array; therefore, its spectral components are concentrated on the spatial direct current (DC) components in the 2D amplitude spectrum. In that study, we estimated the noise DC amplitudes using a deep neural network (DNN), then subtracted them from the observed spectrum to suppress the noise. However, the performance of noise suppression can be improved further. In this study, we estimate the noise DC components theoretically instead of empirically using a DNN. We improved the performance successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信