利用合成少数派过采样技术(SMOTE)处理自闭症不平衡数据

Asmaa A. El-sayed, Mahmood A. Mahmood, N. Meguid, H. Hefny
{"title":"利用合成少数派过采样技术(SMOTE)处理自闭症不平衡数据","authors":"Asmaa A. El-sayed, Mahmood A. Mahmood, N. Meguid, H. Hefny","doi":"10.1109/ICOCS.2015.7483267","DOIUrl":null,"url":null,"abstract":"The autism diagnostic interview-revised (ADI-R) is a semi-structured interview designed to assess the three core aspects of autism spectrum disorder (ASD). In this research a synthetic minority over-sampling technique (SMOT) was presented for handling autism imbalanced data to increase accuracy credibility. SMOT can potentially lead to over fitting on multiple copies of minority class examples. The autism data collected from National Research Center in Egypt (NRC). The experimental dataset applied on several machine learning algorithms and compared the accuracy before and after over-sampling techniques. The result show that over-sampling for imbalanced data making accuracy realistic and non-deceptive and can be Reliable.","PeriodicalId":123709,"journal":{"name":"2015 Third World Conference on Complex Systems (WCCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Handling autism imbalanced data using synthetic minority over-sampling technique (SMOTE)\",\"authors\":\"Asmaa A. El-sayed, Mahmood A. Mahmood, N. Meguid, H. Hefny\",\"doi\":\"10.1109/ICOCS.2015.7483267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The autism diagnostic interview-revised (ADI-R) is a semi-structured interview designed to assess the three core aspects of autism spectrum disorder (ASD). In this research a synthetic minority over-sampling technique (SMOT) was presented for handling autism imbalanced data to increase accuracy credibility. SMOT can potentially lead to over fitting on multiple copies of minority class examples. The autism data collected from National Research Center in Egypt (NRC). The experimental dataset applied on several machine learning algorithms and compared the accuracy before and after over-sampling techniques. The result show that over-sampling for imbalanced data making accuracy realistic and non-deceptive and can be Reliable.\",\"PeriodicalId\":123709,\"journal\":{\"name\":\"2015 Third World Conference on Complex Systems (WCCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Third World Conference on Complex Systems (WCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOCS.2015.7483267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Third World Conference on Complex Systems (WCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCS.2015.7483267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

自闭症诊断访谈-修订版(ADI-R)是一种半结构化访谈,旨在评估自闭症谱系障碍(ASD)的三个核心方面。本研究提出了一种合成少数派过采样技术(SMOT)来处理自闭症不平衡数据,以提高准确性的可信度。SMOT可能会导致对少数类示例的多个副本的过度拟合。自闭症数据来自埃及国家研究中心(NRC)。实验数据集应用于几种机器学习算法,并比较了过采样技术前后的精度。结果表明,对不平衡数据进行过采样,精度真实、不具欺骗性,具有较高的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handling autism imbalanced data using synthetic minority over-sampling technique (SMOTE)
The autism diagnostic interview-revised (ADI-R) is a semi-structured interview designed to assess the three core aspects of autism spectrum disorder (ASD). In this research a synthetic minority over-sampling technique (SMOT) was presented for handling autism imbalanced data to increase accuracy credibility. SMOT can potentially lead to over fitting on multiple copies of minority class examples. The autism data collected from National Research Center in Egypt (NRC). The experimental dataset applied on several machine learning algorithms and compared the accuracy before and after over-sampling techniques. The result show that over-sampling for imbalanced data making accuracy realistic and non-deceptive and can be Reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信