基于旋转不变图像描述符和机器学习技术的指纹匹配

Ravinder Kumar, P.Surya Chandra, M. Hanmandlu
{"title":"基于旋转不变图像描述符和机器学习技术的指纹匹配","authors":"Ravinder Kumar, P.Surya Chandra, M. Hanmandlu","doi":"10.1109/ICETET.2013.4","DOIUrl":null,"url":null,"abstract":"The reliability of fingerprint matching system is highly depends on the perfect alignment algorithm and a suitable matching techniques, which assign a label to the input fingerprint image. In this paper, we propose a rotation invariant fingerprint descriptor and a improved generalization performance classifier. The proposed new descriptor is represented by a histogram of local directional pattern (LDP) computed from extracted region of interest (ROI) of fingerprint images. For fingerprint matching, we propose a single hidden layer neural network (SLFN), which combines a powerful extreme learning machine (ELM) and a well generalized resilient propagation (RPROP) algorithm. The proposed fingerprint matching system comprises the following steps: fingerprint pre-processing/enhancement, ROI extraction, invariant LDP feature extraction, and matching using proposed hybrid classifier. The experimental result shows that the matching accuracy of the proposed system is improved as compare to ELM for lower values of hidden nodes, and other distance based matching approaches proposed in the literature.","PeriodicalId":440967,"journal":{"name":"2013 6th International Conference on Emerging Trends in Engineering and Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fingerprint Matching Using Rotational Invariant Image Based Descriptor and Machine Learning Techniques\",\"authors\":\"Ravinder Kumar, P.Surya Chandra, M. Hanmandlu\",\"doi\":\"10.1109/ICETET.2013.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliability of fingerprint matching system is highly depends on the perfect alignment algorithm and a suitable matching techniques, which assign a label to the input fingerprint image. In this paper, we propose a rotation invariant fingerprint descriptor and a improved generalization performance classifier. The proposed new descriptor is represented by a histogram of local directional pattern (LDP) computed from extracted region of interest (ROI) of fingerprint images. For fingerprint matching, we propose a single hidden layer neural network (SLFN), which combines a powerful extreme learning machine (ELM) and a well generalized resilient propagation (RPROP) algorithm. The proposed fingerprint matching system comprises the following steps: fingerprint pre-processing/enhancement, ROI extraction, invariant LDP feature extraction, and matching using proposed hybrid classifier. The experimental result shows that the matching accuracy of the proposed system is improved as compare to ELM for lower values of hidden nodes, and other distance based matching approaches proposed in the literature.\",\"PeriodicalId\":440967,\"journal\":{\"name\":\"2013 6th International Conference on Emerging Trends in Engineering and Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 6th International Conference on Emerging Trends in Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETET.2013.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Emerging Trends in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET.2013.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

指纹匹配系统的可靠性在很大程度上取决于完美的对齐算法和合适的匹配技术,为输入的指纹图像分配一个标签。本文提出了一种旋转不变指纹描述符和一种改进的泛化性能分类器。该描述符由提取的指纹图像感兴趣区域(ROI)计算的局部方向模式(LDP)直方图表示。针对指纹匹配,我们提出了一种单隐层神经网络(SLFN),它结合了强大的极限学习机(ELM)和良好的广义弹性传播(RPROP)算法。该指纹匹配系统包括指纹预处理/增强、ROI提取、不变LDP特征提取和混合分类器匹配等步骤。实验结果表明,与ELM算法和文献中提出的基于距离的匹配方法相比,该算法在隐藏节点值较低时的匹配精度得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fingerprint Matching Using Rotational Invariant Image Based Descriptor and Machine Learning Techniques
The reliability of fingerprint matching system is highly depends on the perfect alignment algorithm and a suitable matching techniques, which assign a label to the input fingerprint image. In this paper, we propose a rotation invariant fingerprint descriptor and a improved generalization performance classifier. The proposed new descriptor is represented by a histogram of local directional pattern (LDP) computed from extracted region of interest (ROI) of fingerprint images. For fingerprint matching, we propose a single hidden layer neural network (SLFN), which combines a powerful extreme learning machine (ELM) and a well generalized resilient propagation (RPROP) algorithm. The proposed fingerprint matching system comprises the following steps: fingerprint pre-processing/enhancement, ROI extraction, invariant LDP feature extraction, and matching using proposed hybrid classifier. The experimental result shows that the matching accuracy of the proposed system is improved as compare to ELM for lower values of hidden nodes, and other distance based matching approaches proposed in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信