脑电通道耦合在运动图像应用中的分析

A. Pasarica, O. Eva, D. Tarniceriu
{"title":"脑电通道耦合在运动图像应用中的分析","authors":"A. Pasarica, O. Eva, D. Tarniceriu","doi":"10.1109/ISSCS.2017.8034885","DOIUrl":null,"url":null,"abstract":"The analysis of electroencephalographic (EEG) signals for motor imagery applications using the partial directed coherence (PDC) method highlights significant differences between channel pairs that correspond to movement and movement imagination brain activities. We improve the analysis based on PDC by decomposing the EEG signal into frequency components, in order to identify the frequency bands that are mostly influenced by motor imagery activity. We focus on the channel pairs Cz-FP1 and FP1-FP2 due to the fact that they show the highest difference when consider the PDC indicator mean values obtained for the recordings from the dataset. We compute the statistical difference between movement and movement imagery recordings by means of data dispersion and Student “t” test. These results are used to identify channels that are suitable for motor imagery application, in order to reduce the computational complexity of the brain computer interface (BCI) system and the corresponding algorithm.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of EEG channel coupling for motor imagery applications\",\"authors\":\"A. Pasarica, O. Eva, D. Tarniceriu\",\"doi\":\"10.1109/ISSCS.2017.8034885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of electroencephalographic (EEG) signals for motor imagery applications using the partial directed coherence (PDC) method highlights significant differences between channel pairs that correspond to movement and movement imagination brain activities. We improve the analysis based on PDC by decomposing the EEG signal into frequency components, in order to identify the frequency bands that are mostly influenced by motor imagery activity. We focus on the channel pairs Cz-FP1 and FP1-FP2 due to the fact that they show the highest difference when consider the PDC indicator mean values obtained for the recordings from the dataset. We compute the statistical difference between movement and movement imagery recordings by means of data dispersion and Student “t” test. These results are used to identify channels that are suitable for motor imagery application, in order to reduce the computational complexity of the brain computer interface (BCI) system and the corresponding algorithm.\",\"PeriodicalId\":338255,\"journal\":{\"name\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2017.8034885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用部分定向相干性(PDC)方法对运动图像应用的脑电图(EEG)信号进行分析,突出了对应于运动和运动想象大脑活动的通道对之间的显著差异。我们改进了基于PDC的分析方法,将脑电信号分解成频率分量,以识别受运动想象活动影响最大的频段。我们将重点放在通道对Cz-FP1和FP1-FP2上,因为当考虑从数据集记录中获得的PDC指标平均值时,它们显示出最大的差异。我们通过数据离散和学生t检验来计算运动和运动图像记录之间的统计差异。这些结果用于识别适合运动图像应用的通道,以降低脑机接口(BCI)系统和相应算法的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of EEG channel coupling for motor imagery applications
The analysis of electroencephalographic (EEG) signals for motor imagery applications using the partial directed coherence (PDC) method highlights significant differences between channel pairs that correspond to movement and movement imagination brain activities. We improve the analysis based on PDC by decomposing the EEG signal into frequency components, in order to identify the frequency bands that are mostly influenced by motor imagery activity. We focus on the channel pairs Cz-FP1 and FP1-FP2 due to the fact that they show the highest difference when consider the PDC indicator mean values obtained for the recordings from the dataset. We compute the statistical difference between movement and movement imagery recordings by means of data dispersion and Student “t” test. These results are used to identify channels that are suitable for motor imagery application, in order to reduce the computational complexity of the brain computer interface (BCI) system and the corresponding algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信