阿法安形态根鉴别的概率与分组方法

Getachew Mamo Wegari, M. Melucci, S. Teferra
{"title":"阿法安形态根鉴别的概率与分组方法","authors":"Getachew Mamo Wegari, M. Melucci, S. Teferra","doi":"10.1109/CONFLUENCE.2016.7508039","DOIUrl":null,"url":null,"abstract":"Morphological models are used in many natural language processing tasks including machine translation and speech recognition. We investigated probabilistic and grouping methods to develop a morphological root identification model for Afaan Oromo. In this paper, we have experimentally shown that the proposed methods can improve the morphological root identification performance of some state-of-the-art methods.","PeriodicalId":299044,"journal":{"name":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Probabilistic and grouping methods for morphological root identification for Afaan Oromo\",\"authors\":\"Getachew Mamo Wegari, M. Melucci, S. Teferra\",\"doi\":\"10.1109/CONFLUENCE.2016.7508039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Morphological models are used in many natural language processing tasks including machine translation and speech recognition. We investigated probabilistic and grouping methods to develop a morphological root identification model for Afaan Oromo. In this paper, we have experimentally shown that the proposed methods can improve the morphological root identification performance of some state-of-the-art methods.\",\"PeriodicalId\":299044,\"journal\":{\"name\":\"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2016.7508039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2016.7508039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

形态学模型用于许多自然语言处理任务,包括机器翻译和语音识别。研究了概率和分组方法,建立了阿法安奥罗莫的形态根识别模型。在本文中,我们通过实验证明了所提出的方法可以提高一些最先进的形态学根识别方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic and grouping methods for morphological root identification for Afaan Oromo
Morphological models are used in many natural language processing tasks including machine translation and speech recognition. We investigated probabilistic and grouping methods to develop a morphological root identification model for Afaan Oromo. In this paper, we have experimentally shown that the proposed methods can improve the morphological root identification performance of some state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信