图形模型的粒子过滤器

M. Briers, A. Doucet, S. Singh, K. Weekes
{"title":"图形模型的粒子过滤器","authors":"M. Briers, A. Doucet, S. Singh, K. Weekes","doi":"10.1109/NSSPW.2006.4378820","DOIUrl":null,"url":null,"abstract":"This paper discloses a novel algorithm for efficient inference in undirected graphical models using Sequential Monte Carlo (SMC) based numerical approximation techniques. The developed methodology extends the applicability of the much celebrated Loopy Belief Propagation (LBP) algorithm to nonlinear, non-Gaussian models, whilst retaining a computational cost that is linear in the number of sample points (or particles). The work presented is thus a general framework that can be applied to a plethora of novel non-linear signal processing problems. In this paper, we apply our inference algorithm to the (sequential problem of) articulated object tracking.","PeriodicalId":388611,"journal":{"name":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Particle Filters for Graphical Models\",\"authors\":\"M. Briers, A. Doucet, S. Singh, K. Weekes\",\"doi\":\"10.1109/NSSPW.2006.4378820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discloses a novel algorithm for efficient inference in undirected graphical models using Sequential Monte Carlo (SMC) based numerical approximation techniques. The developed methodology extends the applicability of the much celebrated Loopy Belief Propagation (LBP) algorithm to nonlinear, non-Gaussian models, whilst retaining a computational cost that is linear in the number of sample points (or particles). The work presented is thus a general framework that can be applied to a plethora of novel non-linear signal processing problems. In this paper, we apply our inference algorithm to the (sequential problem of) articulated object tracking.\",\"PeriodicalId\":388611,\"journal\":{\"name\":\"2006 IEEE Nonlinear Statistical Signal Processing Workshop\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Nonlinear Statistical Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSPW.2006.4378820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSPW.2006.4378820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于序贯蒙特卡罗(SMC)数值逼近技术的无向图模型高效推理新算法。该开发的方法将著名的环形信念传播(LBP)算法的适用性扩展到非线性、非高斯模型,同时保留了样本点(或粒子)数量线性的计算成本。因此,所提出的工作是一个通用框架,可以应用于大量新的非线性信号处理问题。在本文中,我们将我们的推理算法应用于铰接目标跟踪的(顺序问题)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Filters for Graphical Models
This paper discloses a novel algorithm for efficient inference in undirected graphical models using Sequential Monte Carlo (SMC) based numerical approximation techniques. The developed methodology extends the applicability of the much celebrated Loopy Belief Propagation (LBP) algorithm to nonlinear, non-Gaussian models, whilst retaining a computational cost that is linear in the number of sample points (or particles). The work presented is thus a general framework that can be applied to a plethora of novel non-linear signal processing problems. In this paper, we apply our inference algorithm to the (sequential problem of) articulated object tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信