{"title":"基于虚拟关节的多约束条件下双臂机械臂运动控制","authors":"D. P. Pagnotta, A. Freddi, S. Longhi, A. Monteriù","doi":"10.1115/detc2019-98048","DOIUrl":null,"url":null,"abstract":"\n A kinematic controller for a dual-arm system able to cope with kinematic constraints is presented in this paper. The kinematic controller is designed according to the Relative Jacobian method to achieve cooperation of a couple of 7 DOF robotic arms. The kinematic redundancy obtained from cooperation is exploited to execute other subtasks along the main task. The concept of virtual joint space proposed in the General Weighted Least Norm (GWLN) method is employed in order to include the constraints in the problem. Firstly, the GWLN is reformulated for a dual-arm system, including only the joint limit avoidance subtask. Then, the obstacle avoidance subtask is also considered and a new version of the kinematic controller is derived when the number of constraints is larger than the number of joints. Simulation are performed on the model of the Baxter Robot, in the Matlab-Simulink environment.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual-Arm Manipulators Kinematic Control Under Multiple Constraints via Virtual Joints Approach\",\"authors\":\"D. P. Pagnotta, A. Freddi, S. Longhi, A. Monteriù\",\"doi\":\"10.1115/detc2019-98048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A kinematic controller for a dual-arm system able to cope with kinematic constraints is presented in this paper. The kinematic controller is designed according to the Relative Jacobian method to achieve cooperation of a couple of 7 DOF robotic arms. The kinematic redundancy obtained from cooperation is exploited to execute other subtasks along the main task. The concept of virtual joint space proposed in the General Weighted Least Norm (GWLN) method is employed in order to include the constraints in the problem. Firstly, the GWLN is reformulated for a dual-arm system, including only the joint limit avoidance subtask. Then, the obstacle avoidance subtask is also considered and a new version of the kinematic controller is derived when the number of constraints is larger than the number of joints. Simulation are performed on the model of the Baxter Robot, in the Matlab-Simulink environment.\",\"PeriodicalId\":166402,\"journal\":{\"name\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual-Arm Manipulators Kinematic Control Under Multiple Constraints via Virtual Joints Approach
A kinematic controller for a dual-arm system able to cope with kinematic constraints is presented in this paper. The kinematic controller is designed according to the Relative Jacobian method to achieve cooperation of a couple of 7 DOF robotic arms. The kinematic redundancy obtained from cooperation is exploited to execute other subtasks along the main task. The concept of virtual joint space proposed in the General Weighted Least Norm (GWLN) method is employed in order to include the constraints in the problem. Firstly, the GWLN is reformulated for a dual-arm system, including only the joint limit avoidance subtask. Then, the obstacle avoidance subtask is also considered and a new version of the kinematic controller is derived when the number of constraints is larger than the number of joints. Simulation are performed on the model of the Baxter Robot, in the Matlab-Simulink environment.