投影平面上的群律及其在公钥密码中的应用

R. Durán Díaz, L. Hernández Encinas, J. Muñoz Masqué
{"title":"投影平面上的群律及其在公钥密码中的应用","authors":"R. Durán Díaz, L. Hernández Encinas, J. Muñoz Masqué","doi":"10.3390/MATH8050734","DOIUrl":null,"url":null,"abstract":"We present a new group law defined on a subset of the projective plane $\\mathbb{F}P^2$ over an arbitrary field $\\mathbb{F}$, which lends itself to applications in Public Key Cryptography, in particular to a Diffie-Hellman-like key agreement protocol. We analyze the computational difficulty of solving the mathematical problem underlying the proposed Abelian group law and we prove that the security of our proposal is equivalent to the discrete logarithm problem in the multiplicative group of the cubic extension of the finite field considered. Finally, we present a variant of the proposed group law but over the ring $\\mathbb{Z}/pq\\mathbb{Z}$, and explain how the security becomes enhanced, though at the cost of a longer key length.","PeriodicalId":420133,"journal":{"name":"arXiv: Cryptography and Security","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Group Law on the Projective Plane with Applications in Public Key Cryptography\",\"authors\":\"R. Durán Díaz, L. Hernández Encinas, J. Muñoz Masqué\",\"doi\":\"10.3390/MATH8050734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new group law defined on a subset of the projective plane $\\\\mathbb{F}P^2$ over an arbitrary field $\\\\mathbb{F}$, which lends itself to applications in Public Key Cryptography, in particular to a Diffie-Hellman-like key agreement protocol. We analyze the computational difficulty of solving the mathematical problem underlying the proposed Abelian group law and we prove that the security of our proposal is equivalent to the discrete logarithm problem in the multiplicative group of the cubic extension of the finite field considered. Finally, we present a variant of the proposed group law but over the ring $\\\\mathbb{Z}/pq\\\\mathbb{Z}$, and explain how the security becomes enhanced, though at the cost of a longer key length.\",\"PeriodicalId\":420133,\"journal\":{\"name\":\"arXiv: Cryptography and Security\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Cryptography and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/MATH8050734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MATH8050734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在任意域$\mathbb{F}$上的投影平面$\mathbb{F}P^2$的子集上定义了一个新的群律,它适用于公钥密码学,特别是类似diffie - hellman的密钥协议。我们分析了所提出的阿贝尔群律所隐含的数学问题的计算难度,并证明了所提出的阿贝尔群律的安全性等价于所考虑的有限域的三次扩展的乘法群中的离散对数问题。最后,我们给出了所提出的群律的一个变体,但在环$\mathbb{Z}/pq\mathbb{Z}$上,并解释了安全性是如何增强的,尽管代价是更长的密钥长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Group Law on the Projective Plane with Applications in Public Key Cryptography
We present a new group law defined on a subset of the projective plane $\mathbb{F}P^2$ over an arbitrary field $\mathbb{F}$, which lends itself to applications in Public Key Cryptography, in particular to a Diffie-Hellman-like key agreement protocol. We analyze the computational difficulty of solving the mathematical problem underlying the proposed Abelian group law and we prove that the security of our proposal is equivalent to the discrete logarithm problem in the multiplicative group of the cubic extension of the finite field considered. Finally, we present a variant of the proposed group law but over the ring $\mathbb{Z}/pq\mathbb{Z}$, and explain how the security becomes enhanced, though at the cost of a longer key length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信