发育网络中的新颖性估计:乙酰胆碱和去甲肾上腺素

Jordan A. Fish, Lisa Ossian, J. Weng
{"title":"发育网络中的新颖性估计:乙酰胆碱和去甲肾上腺素","authors":"Jordan A. Fish, Lisa Ossian, J. Weng","doi":"10.1109/IJCNN.2013.6706722","DOIUrl":null,"url":null,"abstract":"The receiver operating characteristic (ROC) curve has been widely applied to classifiers to show how the threshold value for acceptance changes the true positive rate and the false positive rate of the detection jointly. However, it is largely unknown how a biological brain autonomously selects a confidence value for each detection case. In the reported work, we investigated this issue based on the class of Developmental Networks (DNs) which have a power of abstraction similar to symbolic finite automata (FA) but all the DN's representations are emergent (i.e., numeric from the physical world and non-symbolic). Our theory is based on two types of neurotransmitters: Acetylcholine (Ach) and Norepinephrine (NE). Inspired by studies that proposed Ach and NE represent uncertainty and unpredicted uncertainty, respectively, we model how a DN uses Ach and NE to allow neurons to collectively decide acceptance or rejection by estimated novelty based on past experience, instead of using a single threshold value. This is a neural network, distributed, incremental, automatic version of ROC.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novelty estimation in developmental networks: Acetylcholine and norepinephrine\",\"authors\":\"Jordan A. Fish, Lisa Ossian, J. Weng\",\"doi\":\"10.1109/IJCNN.2013.6706722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The receiver operating characteristic (ROC) curve has been widely applied to classifiers to show how the threshold value for acceptance changes the true positive rate and the false positive rate of the detection jointly. However, it is largely unknown how a biological brain autonomously selects a confidence value for each detection case. In the reported work, we investigated this issue based on the class of Developmental Networks (DNs) which have a power of abstraction similar to symbolic finite automata (FA) but all the DN's representations are emergent (i.e., numeric from the physical world and non-symbolic). Our theory is based on two types of neurotransmitters: Acetylcholine (Ach) and Norepinephrine (NE). Inspired by studies that proposed Ach and NE represent uncertainty and unpredicted uncertainty, respectively, we model how a DN uses Ach and NE to allow neurons to collectively decide acceptance or rejection by estimated novelty based on past experience, instead of using a single threshold value. This is a neural network, distributed, incremental, automatic version of ROC.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

接受者工作特征曲线(receiver operating characteristic, ROC)被广泛应用于分类器中,以显示接受阈值如何共同改变检测的真阳性率和假阳性率。然而,生物大脑是如何为每个检测案例自主选择置信度的,这在很大程度上是未知的。在报告的工作中,我们基于发展性网络(DN)类研究了这个问题,发展性网络具有类似于符号有限自动机(FA)的抽象能力,但所有DN的表示都是突现的(即,来自物理世界的数字和非符号)。我们的理论基于两种类型的神经递质:乙酰胆碱(Ach)和去甲肾上腺素(NE)。受到提出Ach和NE分别代表不确定性和不可预测的不确定性的研究的启发,我们对DN如何使用Ach和NE来允许神经元根据过去经验根据估计的新颖性集体决定接受或拒绝进行建模,而不是使用单个阈值。这是一个神经网络,分布式,增量,自动版本的ROC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novelty estimation in developmental networks: Acetylcholine and norepinephrine
The receiver operating characteristic (ROC) curve has been widely applied to classifiers to show how the threshold value for acceptance changes the true positive rate and the false positive rate of the detection jointly. However, it is largely unknown how a biological brain autonomously selects a confidence value for each detection case. In the reported work, we investigated this issue based on the class of Developmental Networks (DNs) which have a power of abstraction similar to symbolic finite automata (FA) but all the DN's representations are emergent (i.e., numeric from the physical world and non-symbolic). Our theory is based on two types of neurotransmitters: Acetylcholine (Ach) and Norepinephrine (NE). Inspired by studies that proposed Ach and NE represent uncertainty and unpredicted uncertainty, respectively, we model how a DN uses Ach and NE to allow neurons to collectively decide acceptance or rejection by estimated novelty based on past experience, instead of using a single threshold value. This is a neural network, distributed, incremental, automatic version of ROC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信