数据中心2020:面向数据应用的近内存加速

E. Doller, Ameen Akel, Jeffrey Wang, Ken Curewitz, S. Eilert
{"title":"数据中心2020:面向数据应用的近内存加速","authors":"E. Doller, Ameen Akel, Jeffrey Wang, Ken Curewitz, S. Eilert","doi":"10.1109/VLSIC.2014.6858357","DOIUrl":null,"url":null,"abstract":"In the years between now and 2020, we should expect continued exponential data growth [15][16]. A number of ongoing advances in storage: the transition to solid-state drives (SSDs), the scaling of NAND flash capacity, and advanced silicon packaging techniques will dramatically increase the capacity of storage subsystems over the same timeframe. This will significantly reduce the ratio of storage bandwidth to storage density. Consequently, the majority of data in 2020 will either be cold or will require near-memory acceleration to pull rich information out of the sea of big data. We argue that, increasingly over time, value lies not merely in the size of the data, but rather in what one can do with it.","PeriodicalId":381216,"journal":{"name":"2014 Symposium on VLSI Circuits Digest of Technical Papers","volume":"318 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"DataCenter 2020: Near-memory acceleration for data-oriented applications\",\"authors\":\"E. Doller, Ameen Akel, Jeffrey Wang, Ken Curewitz, S. Eilert\",\"doi\":\"10.1109/VLSIC.2014.6858357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the years between now and 2020, we should expect continued exponential data growth [15][16]. A number of ongoing advances in storage: the transition to solid-state drives (SSDs), the scaling of NAND flash capacity, and advanced silicon packaging techniques will dramatically increase the capacity of storage subsystems over the same timeframe. This will significantly reduce the ratio of storage bandwidth to storage density. Consequently, the majority of data in 2020 will either be cold or will require near-memory acceleration to pull rich information out of the sea of big data. We argue that, increasingly over time, value lies not merely in the size of the data, but rather in what one can do with it.\",\"PeriodicalId\":381216,\"journal\":{\"name\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"volume\":\"318 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2014.6858357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Circuits Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2014.6858357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

从现在到2020年,我们应该期待持续的指数级数据增长[15][16]。存储方面的一些持续进步:向固态硬盘(ssd)的过渡、NAND闪存容量的扩展以及先进的硅封装技术将在同一时间段内显著增加存储子系统的容量。这将显著降低存储带宽与存储密度的比率。因此,2020年的大多数数据要么是冷的,要么需要近内存加速才能从大数据的海洋中提取丰富的信息。我们认为,随着时间的推移,价值不仅在于数据的大小,还在于人们能用数据做什么。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DataCenter 2020: Near-memory acceleration for data-oriented applications
In the years between now and 2020, we should expect continued exponential data growth [15][16]. A number of ongoing advances in storage: the transition to solid-state drives (SSDs), the scaling of NAND flash capacity, and advanced silicon packaging techniques will dramatically increase the capacity of storage subsystems over the same timeframe. This will significantly reduce the ratio of storage bandwidth to storage density. Consequently, the majority of data in 2020 will either be cold or will require near-memory acceleration to pull rich information out of the sea of big data. We argue that, increasingly over time, value lies not merely in the size of the data, but rather in what one can do with it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信