基于搜索焦点网络的香菇语义分割方法

Juan Du, Songxuan Liu
{"title":"基于搜索焦点网络的香菇语义分割方法","authors":"Juan Du, Songxuan Liu","doi":"10.1109/ICARA56516.2023.10125799","DOIUrl":null,"url":null,"abstract":"The substantially similar texture features of sticks and shiitake mushrooms in the mushroom-growing environment make precisely labeled samples more expensive and semantic segmentation of shiitake mushrooms more challenging. In this paper, a search focus network(SFNet) for semantic segmentation of shiitake mushrooms was proposed, which utilized the group-reversal attention module(GRAM) to strengthen semantic information understanding and trained via transfer learning and data augmentation strategies. The experimental results on the self-built shiitake mushroom sticks dataset revealed that structural measure $S_{\\alpha}$, weighted F-measure $F_{\\beta}^{\\omega}$, adaptive E-measure $E_{\\phi}^{ad}$, and absolute mean error $M$ of SFNet were 0.9161, 0.9113, 0.9808, and 0.0049, respectively, with practical and steady performance. With only a few training samples, the proposed approach can accomplish the semantic segmentation task of shiitake mushrooms.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shiitake Mushroom Semantic Segmentation Method Based on Search Focus Network\",\"authors\":\"Juan Du, Songxuan Liu\",\"doi\":\"10.1109/ICARA56516.2023.10125799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The substantially similar texture features of sticks and shiitake mushrooms in the mushroom-growing environment make precisely labeled samples more expensive and semantic segmentation of shiitake mushrooms more challenging. In this paper, a search focus network(SFNet) for semantic segmentation of shiitake mushrooms was proposed, which utilized the group-reversal attention module(GRAM) to strengthen semantic information understanding and trained via transfer learning and data augmentation strategies. The experimental results on the self-built shiitake mushroom sticks dataset revealed that structural measure $S_{\\\\alpha}$, weighted F-measure $F_{\\\\beta}^{\\\\omega}$, adaptive E-measure $E_{\\\\phi}^{ad}$, and absolute mean error $M$ of SFNet were 0.9161, 0.9113, 0.9808, and 0.0049, respectively, with practical and steady performance. With only a few training samples, the proposed approach can accomplish the semantic segmentation task of shiitake mushrooms.\",\"PeriodicalId\":443572,\"journal\":{\"name\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA56516.2023.10125799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10125799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在蘑菇生长环境中,木棒和香菇的纹理特征基本相似,这使得精确标记样品的成本更高,也使香菇的语义分割更具挑战性。本文提出了一种用于香菇语义分割的搜索焦点网络(SFNet),该网络利用群体反转注意模块(GRAM)加强语义信息理解,并通过迁移学习和数据增强策略进行训练。在自建香菇条数据集上的实验结果表明,SFNet的结构测度$S_{\alpha}$、加权f测度$F_{\beta}^{\omega}$、自适应e测度$E_{\phi}^{ad}$和绝对平均误差$M$分别为0.9161、0.9113、0.9808和0.0049,具有实用稳定的性能。该方法只需要少量的训练样本,就可以完成香菇的语义分割任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shiitake Mushroom Semantic Segmentation Method Based on Search Focus Network
The substantially similar texture features of sticks and shiitake mushrooms in the mushroom-growing environment make precisely labeled samples more expensive and semantic segmentation of shiitake mushrooms more challenging. In this paper, a search focus network(SFNet) for semantic segmentation of shiitake mushrooms was proposed, which utilized the group-reversal attention module(GRAM) to strengthen semantic information understanding and trained via transfer learning and data augmentation strategies. The experimental results on the self-built shiitake mushroom sticks dataset revealed that structural measure $S_{\alpha}$, weighted F-measure $F_{\beta}^{\omega}$, adaptive E-measure $E_{\phi}^{ad}$, and absolute mean error $M$ of SFNet were 0.9161, 0.9113, 0.9808, and 0.0049, respectively, with practical and steady performance. With only a few training samples, the proposed approach can accomplish the semantic segmentation task of shiitake mushrooms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信