分析卤化物DSL与CPU性能事件调度优化

R. Machado, André Murbach Maidl, Daniel Weingaertner
{"title":"分析卤化物DSL与CPU性能事件调度优化","authors":"R. Machado, André Murbach Maidl, Daniel Weingaertner","doi":"10.1145/3355378.3355381","DOIUrl":null,"url":null,"abstract":"Halide is a domain-specific language (DSL) for image processing that enforces a separation of the algorithm and the execution schedule, allowing the generation of specialized code for distinct computer architectures by rewriting only the execution schedule, instead of the whole algorithm. In order to support the creation of good Halide schedules, our work extends the Halide DSL by adding a profiling API that uses the CPU Performance Events to measure events supported by the target processor during the application runtime. The proposed extension offers profiling of the application loop levels and functions' producer and consumer relations, embedding calls to a profiling library in the loop nests of the generated code. It also supports individualized profiling by threads on parallel regions. As a case study we use the PAPI library in order to count events such as L1 cache misses, number of float operations (FLOP) and L3 data volume on an Intel Core i5-7500 CPU, and discuss how the reported results can be used to manually or automatically generate better schedules for an image processing pipeline.","PeriodicalId":429937,"journal":{"name":"Proceedings of the XXIII Brazilian Symposium on Programming Languages","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Profiling Halide DSL with CPU Performance Events for Schedule Optimization\",\"authors\":\"R. Machado, André Murbach Maidl, Daniel Weingaertner\",\"doi\":\"10.1145/3355378.3355381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Halide is a domain-specific language (DSL) for image processing that enforces a separation of the algorithm and the execution schedule, allowing the generation of specialized code for distinct computer architectures by rewriting only the execution schedule, instead of the whole algorithm. In order to support the creation of good Halide schedules, our work extends the Halide DSL by adding a profiling API that uses the CPU Performance Events to measure events supported by the target processor during the application runtime. The proposed extension offers profiling of the application loop levels and functions' producer and consumer relations, embedding calls to a profiling library in the loop nests of the generated code. It also supports individualized profiling by threads on parallel regions. As a case study we use the PAPI library in order to count events such as L1 cache misses, number of float operations (FLOP) and L3 data volume on an Intel Core i5-7500 CPU, and discuss how the reported results can be used to manually or automatically generate better schedules for an image processing pipeline.\",\"PeriodicalId\":429937,\"journal\":{\"name\":\"Proceedings of the XXIII Brazilian Symposium on Programming Languages\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the XXIII Brazilian Symposium on Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3355378.3355381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the XXIII Brazilian Symposium on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355378.3355381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Halide是一种用于图像处理的领域特定语言(DSL),它强制分离算法和执行计划,允许通过仅重写执行计划而不是整个算法来为不同的计算机体系结构生成专门的代码。为了支持创建良好的Halide调度,我们的工作扩展了Halide DSL,添加了一个分析API,该API使用CPU Performance Events来测量应用程序运行时目标处理器支持的事件。提议的扩展提供了对应用程序循环级别和函数的生产者和消费者关系的分析,将对分析库的调用嵌入到生成代码的循环巢中。它还支持并行区域上线程的个性化分析。作为一个案例研究,我们使用PAPI库来计算事件,例如在Intel Core i5-7500 CPU上的L1缓存缺失、浮点操作(FLOP)数量和L3数据量,并讨论如何使用报告的结果手动或自动为图像处理管道生成更好的调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Profiling Halide DSL with CPU Performance Events for Schedule Optimization
Halide is a domain-specific language (DSL) for image processing that enforces a separation of the algorithm and the execution schedule, allowing the generation of specialized code for distinct computer architectures by rewriting only the execution schedule, instead of the whole algorithm. In order to support the creation of good Halide schedules, our work extends the Halide DSL by adding a profiling API that uses the CPU Performance Events to measure events supported by the target processor during the application runtime. The proposed extension offers profiling of the application loop levels and functions' producer and consumer relations, embedding calls to a profiling library in the loop nests of the generated code. It also supports individualized profiling by threads on parallel regions. As a case study we use the PAPI library in order to count events such as L1 cache misses, number of float operations (FLOP) and L3 data volume on an Intel Core i5-7500 CPU, and discuss how the reported results can be used to manually or automatically generate better schedules for an image processing pipeline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信