锂离子电池快速充电技术在电动汽车中的应用

A. E. Halim, Y. Nassar, H. J. Khozondar, E. Bayoumi
{"title":"锂离子电池快速充电技术在电动汽车中的应用","authors":"A. E. Halim, Y. Nassar, H. J. Khozondar, E. Bayoumi","doi":"10.1109/ieCRES57315.2023.10209433","DOIUrl":null,"url":null,"abstract":"Electric vehicles (EVs) will make up a large amount of the demand on future power networks as more people switch to driving them. Lithium-ion battery fast charging is critical to save time and minimize its impact on the utility grid. The goal of this paper is twofold: first, to create a proof-of-concept Simulink model for EV fast chargers; second, to highlight several shortcomings in present fast charger technology. The suggested technique employs PWM rectifiers on the grid side to provide a near-unity power factor with sinusoidal voltage and current. A buck DC-DC converter on the battery side provides the necessary charging voltage to the Lithium-ion battery. Both converters are designed to provide their primary objectives. A set of simulation results is provided to validate the suggested fast-charging technique. The proposed technique successfully charges a 50-kWh battery in 10.25 minutes.","PeriodicalId":431920,"journal":{"name":"2023 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Charging of Lithium-ion Battery for Electric Vehicles Application\",\"authors\":\"A. E. Halim, Y. Nassar, H. J. Khozondar, E. Bayoumi\",\"doi\":\"10.1109/ieCRES57315.2023.10209433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric vehicles (EVs) will make up a large amount of the demand on future power networks as more people switch to driving them. Lithium-ion battery fast charging is critical to save time and minimize its impact on the utility grid. The goal of this paper is twofold: first, to create a proof-of-concept Simulink model for EV fast chargers; second, to highlight several shortcomings in present fast charger technology. The suggested technique employs PWM rectifiers on the grid side to provide a near-unity power factor with sinusoidal voltage and current. A buck DC-DC converter on the battery side provides the necessary charging voltage to the Lithium-ion battery. Both converters are designed to provide their primary objectives. A set of simulation results is provided to validate the suggested fast-charging technique. The proposed technique successfully charges a 50-kWh battery in 10.25 minutes.\",\"PeriodicalId\":431920,\"journal\":{\"name\":\"2023 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ieCRES57315.2023.10209433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ieCRES57315.2023.10209433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着越来越多的人转向驾驶电动汽车,电动汽车将在未来的电力网络中占据很大一部分需求。锂离子电池快速充电对于节省时间和减少对电网的影响至关重要。本文的目的有两个:首先,建立一个电动汽车快速充电器的概念验证Simulink模型;第二,突出当前快速充电器技术的几个不足。建议的技术在电网侧采用PWM整流器,以正弦电压和电流提供接近统一的功率因数。电池侧的降压DC-DC转换器为锂离子电池提供必要的充电电压。这两个转换器的设计都是为了提供它们的主要目标。给出了一组仿真结果来验证所提出的快速充电技术。该技术成功地在10.25分钟内为50千瓦时的电池充电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Charging of Lithium-ion Battery for Electric Vehicles Application
Electric vehicles (EVs) will make up a large amount of the demand on future power networks as more people switch to driving them. Lithium-ion battery fast charging is critical to save time and minimize its impact on the utility grid. The goal of this paper is twofold: first, to create a proof-of-concept Simulink model for EV fast chargers; second, to highlight several shortcomings in present fast charger technology. The suggested technique employs PWM rectifiers on the grid side to provide a near-unity power factor with sinusoidal voltage and current. A buck DC-DC converter on the battery side provides the necessary charging voltage to the Lithium-ion battery. Both converters are designed to provide their primary objectives. A set of simulation results is provided to validate the suggested fast-charging technique. The proposed technique successfully charges a 50-kWh battery in 10.25 minutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信