铷跃迁作为天文多普勒光谱仪的波长参考

D. Rogozin, T. Feger, C. Schwab, Y. Gurevich, G. Raskin, D. Coutts, J. Stuermer, A. Seifahrt, T. Fuehrer, T. Legero, H. Van Winckel, S. Halverson, A. Quirrenbach
{"title":"铷跃迁作为天文多普勒光谱仪的波长参考","authors":"D. Rogozin, T. Feger, C. Schwab, Y. Gurevich, G. Raskin, D. Coutts, J. Stuermer, A. Seifahrt, T. Fuehrer, T. Legero, H. Van Winckel, S. Halverson, A. Quirrenbach","doi":"10.1117/12.2541317","DOIUrl":null,"url":null,"abstract":"Precise wavelength calibration is a critical issue for high-resolution spectroscopic observations. The ideal calibration source should be able to provide a very stable and dense grid of evenly distributed spectral lines of constant intensity. A new method which satisfies all mentioned conditions has been developed by our group. The approach is to actively measure the exact position of a single spectral line of a Fabry-Perot etalon with very high precision with a wavelength-tuneable laser and compare it to an extremely stable wavelength standard. The ideal choice of standard is the D2 absorption line of Rubidium, which has been used as an optical frequency standard for decades. With this technique, the problem of stable wavelength calibration of spectrographs becomes a problem of how reliably we can measure and anchor one etalon line to the Rb transition. In this work we present our self-built module for Rb saturated absorption spectroscopy and discuss its stability.","PeriodicalId":131350,"journal":{"name":"Micro + Nano Materials, Devices, and Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rubidium transitions as wavelength reference for astronomical Doppler spectrographs\",\"authors\":\"D. Rogozin, T. Feger, C. Schwab, Y. Gurevich, G. Raskin, D. Coutts, J. Stuermer, A. Seifahrt, T. Fuehrer, T. Legero, H. Van Winckel, S. Halverson, A. Quirrenbach\",\"doi\":\"10.1117/12.2541317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise wavelength calibration is a critical issue for high-resolution spectroscopic observations. The ideal calibration source should be able to provide a very stable and dense grid of evenly distributed spectral lines of constant intensity. A new method which satisfies all mentioned conditions has been developed by our group. The approach is to actively measure the exact position of a single spectral line of a Fabry-Perot etalon with very high precision with a wavelength-tuneable laser and compare it to an extremely stable wavelength standard. The ideal choice of standard is the D2 absorption line of Rubidium, which has been used as an optical frequency standard for decades. With this technique, the problem of stable wavelength calibration of spectrographs becomes a problem of how reliably we can measure and anchor one etalon line to the Rb transition. In this work we present our self-built module for Rb saturated absorption spectroscopy and discuss its stability.\",\"PeriodicalId\":131350,\"journal\":{\"name\":\"Micro + Nano Materials, Devices, and Applications\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro + Nano Materials, Devices, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2541317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2541317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精确的波长校准是高分辨率光谱观测的关键问题。理想的校准源应该能够提供一个非常稳定和密集的网格均匀分布的光谱线的恒定强度。本课题组提出了一种满足上述条件的新方法。该方法是利用波长可调谐激光器以非常高的精度主动测量法布里-珀罗标准子的单个谱线的精确位置,并将其与非常稳定的波长标准进行比较。理想的标准选择是铷的D2吸收线,它已经作为光学频率标准使用了几十年。利用这种技术,光谱仪的稳定波长校准问题变成了我们如何可靠地测量和锚定一个标准子线到Rb跃迁的问题。本文介绍了自制的Rb饱和吸收光谱模块,并对其稳定性进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rubidium transitions as wavelength reference for astronomical Doppler spectrographs
Precise wavelength calibration is a critical issue for high-resolution spectroscopic observations. The ideal calibration source should be able to provide a very stable and dense grid of evenly distributed spectral lines of constant intensity. A new method which satisfies all mentioned conditions has been developed by our group. The approach is to actively measure the exact position of a single spectral line of a Fabry-Perot etalon with very high precision with a wavelength-tuneable laser and compare it to an extremely stable wavelength standard. The ideal choice of standard is the D2 absorption line of Rubidium, which has been used as an optical frequency standard for decades. With this technique, the problem of stable wavelength calibration of spectrographs becomes a problem of how reliably we can measure and anchor one etalon line to the Rb transition. In this work we present our self-built module for Rb saturated absorption spectroscopy and discuss its stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信