{"title":"支持在线毒性检测与知识图谱","authors":"P. Lobo, E. Daga, Harith Alani","doi":"10.1609/icwsm.v16i1.19398","DOIUrl":null,"url":null,"abstract":"Due to the rise in toxic speech on social media and other online platforms, there is a growing need for systems that could automatically flag or filter such content. Various supervised machine learning approaches have been proposed, trained from manually-annotated toxic speech corpora. However, annotators sometimes struggle to judge or to agree on which text is toxic and which group is being targeted in a given text. This could be due to bias, subjectivity, or unfamiliarity\nwith used terminology (e.g. domain language, slang). In this paper, we propose the use of a knowledge graph to help in better understanding such toxic speech annotation issues. Our empirical results show that 3% in a sample of 19k texts mention terms associated with frequently attacked gender and sexual orientation groups that were not correctly identified by the annotators.","PeriodicalId":175641,"journal":{"name":"International Conference on Web and Social Media","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Supporting Online Toxicity Detection with Knowledge Graphs\",\"authors\":\"P. Lobo, E. Daga, Harith Alani\",\"doi\":\"10.1609/icwsm.v16i1.19398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the rise in toxic speech on social media and other online platforms, there is a growing need for systems that could automatically flag or filter such content. Various supervised machine learning approaches have been proposed, trained from manually-annotated toxic speech corpora. However, annotators sometimes struggle to judge or to agree on which text is toxic and which group is being targeted in a given text. This could be due to bias, subjectivity, or unfamiliarity\\nwith used terminology (e.g. domain language, slang). In this paper, we propose the use of a knowledge graph to help in better understanding such toxic speech annotation issues. Our empirical results show that 3% in a sample of 19k texts mention terms associated with frequently attacked gender and sexual orientation groups that were not correctly identified by the annotators.\",\"PeriodicalId\":175641,\"journal\":{\"name\":\"International Conference on Web and Social Media\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v16i1.19398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v16i1.19398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supporting Online Toxicity Detection with Knowledge Graphs
Due to the rise in toxic speech on social media and other online platforms, there is a growing need for systems that could automatically flag or filter such content. Various supervised machine learning approaches have been proposed, trained from manually-annotated toxic speech corpora. However, annotators sometimes struggle to judge or to agree on which text is toxic and which group is being targeted in a given text. This could be due to bias, subjectivity, or unfamiliarity
with used terminology (e.g. domain language, slang). In this paper, we propose the use of a knowledge graph to help in better understanding such toxic speech annotation issues. Our empirical results show that 3% in a sample of 19k texts mention terms associated with frequently attacked gender and sexual orientation groups that were not correctly identified by the annotators.