Atiya Masood, Gang Chen, Yi Mei, Harith Al-Sahaf, Mengjie Zhang
{"title":"基于高斯过程参考点自适应的遗传规划超启发式多目标作业车间调度","authors":"Atiya Masood, Gang Chen, Yi Mei, Harith Al-Sahaf, Mengjie Zhang","doi":"10.1109/CEC55065.2022.9870322","DOIUrl":null,"url":null,"abstract":"Job Shop Scheduling (JSS) is an important real-world problem. However, the problem is challenging because of many conflicting objectives and the complexity of production flows. Genetic programming-based hyper-heuristic (GP-HH) is a useful approach for automatically evolving effective dispatching rules for many-objective JSS. However, the evolved Pareto-front is highly irregular, seriously affecting the effectiveness of GP-HH. Although the reference points method is one of the most prominent and efficient methods for diversity maintenance in many-objective problems, it usually uses a uniform distribution of reference points which is only appropriate for a regular Pareto-front. In fact, some reference points may never be linked to any Pareto-optimal solutions, rendering them useless. These useless reference points can significantly impact the performance of any reference-point-based many-objective optimization algorithms such as NSGA-III. This paper proposes a new reference point adaption process that explicitly constructs the distribution model using Gaussian process to effectively reduce the number of useless reference points to a low level, enabling a close match between reference points and the distribution of Pareto-optimal solutions. We incorporate this mechanism into NSGA-III to build a new algorithm called MARP-NSGA-III which is compared experimentally to several popular many-objective algorithms. Experiment results on a large collection of many-objective benchmark JSS instances clearly show that MARP-NSGA-III can significantly improve the performance by using our Gaussian Process-based reference point adaptation mechanism.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"513 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genetic Programming Hyper-heuristic with Gaussian Process-based Reference Point Adaption for Many-Objective Job Shop Scheduling\",\"authors\":\"Atiya Masood, Gang Chen, Yi Mei, Harith Al-Sahaf, Mengjie Zhang\",\"doi\":\"10.1109/CEC55065.2022.9870322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Job Shop Scheduling (JSS) is an important real-world problem. However, the problem is challenging because of many conflicting objectives and the complexity of production flows. Genetic programming-based hyper-heuristic (GP-HH) is a useful approach for automatically evolving effective dispatching rules for many-objective JSS. However, the evolved Pareto-front is highly irregular, seriously affecting the effectiveness of GP-HH. Although the reference points method is one of the most prominent and efficient methods for diversity maintenance in many-objective problems, it usually uses a uniform distribution of reference points which is only appropriate for a regular Pareto-front. In fact, some reference points may never be linked to any Pareto-optimal solutions, rendering them useless. These useless reference points can significantly impact the performance of any reference-point-based many-objective optimization algorithms such as NSGA-III. This paper proposes a new reference point adaption process that explicitly constructs the distribution model using Gaussian process to effectively reduce the number of useless reference points to a low level, enabling a close match between reference points and the distribution of Pareto-optimal solutions. We incorporate this mechanism into NSGA-III to build a new algorithm called MARP-NSGA-III which is compared experimentally to several popular many-objective algorithms. Experiment results on a large collection of many-objective benchmark JSS instances clearly show that MARP-NSGA-III can significantly improve the performance by using our Gaussian Process-based reference point adaptation mechanism.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"513 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic Programming Hyper-heuristic with Gaussian Process-based Reference Point Adaption for Many-Objective Job Shop Scheduling
Job Shop Scheduling (JSS) is an important real-world problem. However, the problem is challenging because of many conflicting objectives and the complexity of production flows. Genetic programming-based hyper-heuristic (GP-HH) is a useful approach for automatically evolving effective dispatching rules for many-objective JSS. However, the evolved Pareto-front is highly irregular, seriously affecting the effectiveness of GP-HH. Although the reference points method is one of the most prominent and efficient methods for diversity maintenance in many-objective problems, it usually uses a uniform distribution of reference points which is only appropriate for a regular Pareto-front. In fact, some reference points may never be linked to any Pareto-optimal solutions, rendering them useless. These useless reference points can significantly impact the performance of any reference-point-based many-objective optimization algorithms such as NSGA-III. This paper proposes a new reference point adaption process that explicitly constructs the distribution model using Gaussian process to effectively reduce the number of useless reference points to a low level, enabling a close match between reference points and the distribution of Pareto-optimal solutions. We incorporate this mechanism into NSGA-III to build a new algorithm called MARP-NSGA-III which is compared experimentally to several popular many-objective algorithms. Experiment results on a large collection of many-objective benchmark JSS instances clearly show that MARP-NSGA-III can significantly improve the performance by using our Gaussian Process-based reference point adaptation mechanism.