地动反射在拉轮家庭中的局部斑点斑点

Tommi Sanjaya Putra, D. Dafik, E. R. Albirri
{"title":"地动反射在拉轮家庭中的局部斑点斑点","authors":"Tommi Sanjaya Putra, D. Dafik, E. R. Albirri","doi":"10.25037/cgantjma.v3i1.73","DOIUrl":null,"url":null,"abstract":"All graph in this paper is simple and connected graph where $V(G)$ is vertex set and $E(G)$ is edge set. Let function $f : V(G)\\longrightarrow \\{0, 2,..., 2k_v\\}$ as vertex labeling and a function $f: E(G)\\longrightarrow \\{1, 2,..., k_e\\}$ as edge labeling where $k=max\\{2k_v,k_e\\}$ for $k_v,k_e$ are natural number. The weight of vertex $ u,v\\in V(G) $ under $f$ is $w(u)=f(u)+ \\Sigma_{uv \\in E(G)} f(uv)$. In other words, the function $f$ is called local vertex irregular reflexive labeling if every two adjacent vertices has distinct weight and weight of a vertex is defined as the sum of the labels of vertex and the labels of all edges incident this vertex When we assign each vertex of $G$ with a color of the vertex weight $w(uv)$, thus we say the graph G admits a local vertex irregular reflexive coloring. The minimum number of colors produced from local vertex irregular reflexive coloring of graph $G$ is reflexive local irregular chromatic number denoted by $\\chi_{lrvs}(G).$ Furthermore, the minimum $k$ required such that $\\chi_{lrvs}(G)=\\chi(G)$ is called a local reflexive vertex color strength, denoted by \\emph{lrvcs}$(G)$. In this paper, we learn about the local vertex irregular reflexive coloring and obtain \\emph{lrvcs}$(G)$ of wheel related graphs.","PeriodicalId":305608,"journal":{"name":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pewarnaan Titik Ketakteraturan Lokal Refleksif pada Keluarga Graf Roda\",\"authors\":\"Tommi Sanjaya Putra, D. Dafik, E. R. Albirri\",\"doi\":\"10.25037/cgantjma.v3i1.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All graph in this paper is simple and connected graph where $V(G)$ is vertex set and $E(G)$ is edge set. Let function $f : V(G)\\\\longrightarrow \\\\{0, 2,..., 2k_v\\\\}$ as vertex labeling and a function $f: E(G)\\\\longrightarrow \\\\{1, 2,..., k_e\\\\}$ as edge labeling where $k=max\\\\{2k_v,k_e\\\\}$ for $k_v,k_e$ are natural number. The weight of vertex $ u,v\\\\in V(G) $ under $f$ is $w(u)=f(u)+ \\\\Sigma_{uv \\\\in E(G)} f(uv)$. In other words, the function $f$ is called local vertex irregular reflexive labeling if every two adjacent vertices has distinct weight and weight of a vertex is defined as the sum of the labels of vertex and the labels of all edges incident this vertex When we assign each vertex of $G$ with a color of the vertex weight $w(uv)$, thus we say the graph G admits a local vertex irregular reflexive coloring. The minimum number of colors produced from local vertex irregular reflexive coloring of graph $G$ is reflexive local irregular chromatic number denoted by $\\\\chi_{lrvs}(G).$ Furthermore, the minimum $k$ required such that $\\\\chi_{lrvs}(G)=\\\\chi(G)$ is called a local reflexive vertex color strength, denoted by \\\\emph{lrvcs}$(G)$. In this paper, we learn about the local vertex irregular reflexive coloring and obtain \\\\emph{lrvcs}$(G)$ of wheel related graphs.\",\"PeriodicalId\":305608,\"journal\":{\"name\":\"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25037/cgantjma.v3i1.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25037/cgantjma.v3i1.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文中所有图都是简单连通图,其中$V(G)$为顶点集,$E(G)$为边集。设函数$f : V(G)\longrightarrow \{0, 2,..., 2k_v\}$为顶点标号,函数$f: E(G)\longrightarrow \{1, 2,..., k_e\}$为边标号,其中$k_v,k_e$中的$k=max\{2k_v,k_e\}$为自然数。$f$下顶点$ u,v\in V(G) $的权值为$w(u)=f(u)+ \Sigma_{uv \in E(G)} f(uv)$。也就是说,如果相邻的两个顶点都有不同的权值,并且一个顶点的权值定义为顶点的标签和与该顶点相关的所有边的标签之和,那么函数$f$被称为局部顶点不规则自反标记。当我们为$G$的每个顶点赋予一个顶点权值$w(uv)$的颜色时,我们说图G允许局部顶点不规则自反着色。图$G$的局部顶点不规则自反着色产生的最小颜色数为自反的局部不规则色数,记为$\chi_{lrvs}(G).$。此外,使$\chi_{lrvs}(G)=\chi(G)$成为局部顶点自反着色强度所需的最小$k$,记为\emph{lrvcs}$(G)$。本文学习了局部顶点不规则自反着色,得到了轮相关图的\emph{lrvcs}$(G)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pewarnaan Titik Ketakteraturan Lokal Refleksif pada Keluarga Graf Roda
All graph in this paper is simple and connected graph where $V(G)$ is vertex set and $E(G)$ is edge set. Let function $f : V(G)\longrightarrow \{0, 2,..., 2k_v\}$ as vertex labeling and a function $f: E(G)\longrightarrow \{1, 2,..., k_e\}$ as edge labeling where $k=max\{2k_v,k_e\}$ for $k_v,k_e$ are natural number. The weight of vertex $ u,v\in V(G) $ under $f$ is $w(u)=f(u)+ \Sigma_{uv \in E(G)} f(uv)$. In other words, the function $f$ is called local vertex irregular reflexive labeling if every two adjacent vertices has distinct weight and weight of a vertex is defined as the sum of the labels of vertex and the labels of all edges incident this vertex When we assign each vertex of $G$ with a color of the vertex weight $w(uv)$, thus we say the graph G admits a local vertex irregular reflexive coloring. The minimum number of colors produced from local vertex irregular reflexive coloring of graph $G$ is reflexive local irregular chromatic number denoted by $\chi_{lrvs}(G).$ Furthermore, the minimum $k$ required such that $\chi_{lrvs}(G)=\chi(G)$ is called a local reflexive vertex color strength, denoted by \emph{lrvcs}$(G)$. In this paper, we learn about the local vertex irregular reflexive coloring and obtain \emph{lrvcs}$(G)$ of wheel related graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信