基于分形增广描述子的低分辨率卫星图像分类

Rajalaxmi Padhy, S. Swain, S. Dash, Jibitesh Mishra
{"title":"基于分形增广描述子的低分辨率卫星图像分类","authors":"Rajalaxmi Padhy, S. Swain, S. Dash, Jibitesh Mishra","doi":"10.1142/S0219467822500024","DOIUrl":null,"url":null,"abstract":"Satellite imagery consists of highly complex spatial features that make it difficult for traditional image processing techniques to use them for classification tasks. In this paper, we propose a novel method to use these hidden fractal information that naturally exist in these satellite images. We have designed a fractal-based descriptor which generates a scale invariant fractal image for easier fractal-based pattern extraction and uses it as an added feature vector that is combined with the original image and fed into a VGG-16 deep learning architecture which successfully classifies even low-resolution satellite images with an f1-score of 0.78.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Low-Resolution Satellite Images Using Fractal Augmented Descriptors\",\"authors\":\"Rajalaxmi Padhy, S. Swain, S. Dash, Jibitesh Mishra\",\"doi\":\"10.1142/S0219467822500024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite imagery consists of highly complex spatial features that make it difficult for traditional image processing techniques to use them for classification tasks. In this paper, we propose a novel method to use these hidden fractal information that naturally exist in these satellite images. We have designed a fractal-based descriptor which generates a scale invariant fractal image for easier fractal-based pattern extraction and uses it as an added feature vector that is combined with the original image and fed into a VGG-16 deep learning architecture which successfully classifies even low-resolution satellite images with an f1-score of 0.78.\",\"PeriodicalId\":177479,\"journal\":{\"name\":\"Int. J. Image Graph.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Image Graph.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219467822500024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219467822500024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卫星图像包含高度复杂的空间特征,这使得传统的图像处理技术难以将其用于分类任务。在本文中,我们提出了一种新的方法来利用这些隐藏的分形信息,这些信息在这些卫星图像中自然存在。我们设计了一个基于分形的描述符,它生成一个尺度不变的分形图像,以便更容易地提取基于分形的模式,并将其用作与原始图像相结合的附加特征向量,并将其输入到VGG-16深度学习架构中,该架构成功地分类了低分辨率的卫星图像,其f1得分为0.78。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Low-Resolution Satellite Images Using Fractal Augmented Descriptors
Satellite imagery consists of highly complex spatial features that make it difficult for traditional image processing techniques to use them for classification tasks. In this paper, we propose a novel method to use these hidden fractal information that naturally exist in these satellite images. We have designed a fractal-based descriptor which generates a scale invariant fractal image for easier fractal-based pattern extraction and uses it as an added feature vector that is combined with the original image and fed into a VGG-16 deep learning architecture which successfully classifies even low-resolution satellite images with an f1-score of 0.78.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信