{"title":"高频电场作用下有界热等离子体束等离子体相互作用问题的分离方法","authors":"K. El-Shorbagy","doi":"10.1109/NRSC.2001.929422","DOIUrl":null,"url":null,"abstract":"The stabilization effect of a strong HF electric field on the beam-plasma instability in a cylindrical warm plasma waveguide is discussed. A new mathematical technique \"separation method\" applied to the two-fluid plasma model to separate the equations, which describe the system, into two parts; time and space parts. Plasma electrons are considered to have a thermal velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a warm plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to cold plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem.","PeriodicalId":123517,"journal":{"name":"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation method in the problem of a beam-plasma interaction in bounded warm plasma under the effect of HF electric field\",\"authors\":\"K. El-Shorbagy\",\"doi\":\"10.1109/NRSC.2001.929422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stabilization effect of a strong HF electric field on the beam-plasma instability in a cylindrical warm plasma waveguide is discussed. A new mathematical technique \\\"separation method\\\" applied to the two-fluid plasma model to separate the equations, which describe the system, into two parts; time and space parts. Plasma electrons are considered to have a thermal velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a warm plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to cold plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem.\",\"PeriodicalId\":123517,\"journal\":{\"name\":\"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.2001.929422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2001.929422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Separation method in the problem of a beam-plasma interaction in bounded warm plasma under the effect of HF electric field
The stabilization effect of a strong HF electric field on the beam-plasma instability in a cylindrical warm plasma waveguide is discussed. A new mathematical technique "separation method" applied to the two-fluid plasma model to separate the equations, which describe the system, into two parts; time and space parts. Plasma electrons are considered to have a thermal velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a warm plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to cold plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem.