{"title":"基于蒙特卡罗方法的传感器网络协同数据融合跟踪","authors":"Y. Wong, J. K. Wu, L. Ngoh, L. Wong","doi":"10.1109/LCN.2004.34","DOIUrl":null,"url":null,"abstract":"The multi-modality nature of sensor networks and their potentially large-scale deployment have generated highly dimensional network data. This paper proposes a hierarchical collaborative data fusion scheme based on particle filters for cross-sensor fusion and cross-modality fusion for target tracking applications.","PeriodicalId":366183,"journal":{"name":"29th Annual IEEE International Conference on Local Computer Networks","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Collaborative data fusion tracking in sensor networks using Monte Carlo methods\",\"authors\":\"Y. Wong, J. K. Wu, L. Ngoh, L. Wong\",\"doi\":\"10.1109/LCN.2004.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-modality nature of sensor networks and their potentially large-scale deployment have generated highly dimensional network data. This paper proposes a hierarchical collaborative data fusion scheme based on particle filters for cross-sensor fusion and cross-modality fusion for target tracking applications.\",\"PeriodicalId\":366183,\"journal\":{\"name\":\"29th Annual IEEE International Conference on Local Computer Networks\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"29th Annual IEEE International Conference on Local Computer Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2004.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th Annual IEEE International Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2004.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collaborative data fusion tracking in sensor networks using Monte Carlo methods
The multi-modality nature of sensor networks and their potentially large-scale deployment have generated highly dimensional network data. This paper proposes a hierarchical collaborative data fusion scheme based on particle filters for cross-sensor fusion and cross-modality fusion for target tracking applications.