基于多项式混沌展开的状态估计Schmidt-Kalman滤波器

Yang Yang, Han Cai, Baichun Gong, R. Norman
{"title":"基于多项式混沌展开的状态估计Schmidt-Kalman滤波器","authors":"Yang Yang, Han Cai, Baichun Gong, R. Norman","doi":"10.23919/fusion43075.2019.9011327","DOIUrl":null,"url":null,"abstract":"Errors due to uncertain parameters of dynamical systems can result in deterioration of state estimation performance or even filter divergence sometimes using a conventional Kalman filter algorithm. Even worse, these parameters cannot be measured accurately or are unobservable for many applications. Hence, estimating parameters along with state variables would not achieve satisfactory performance. To handle this problem, the Schmidt-Kalman filter (SKF) was introduced to compensate for these errors by considering parameters' covariance, with an assumption of only Gaussian distributions. This paper introduces a new SKF algorithm with polynomial chaos expansion (PCE-SKF). Within the framework of PCE, the dynamical system is predicted forward with an ability to quantify non-Gaussian parametric uncertainties as well. More specifically, the a priori covariance of both the state and parameters can be propagated using PCE, followed by the update step of SKF formulation. Two examples are given to validate the efficacy of the PCE-SKF. The state estimation performance by PCE-SKF is compared with the extended Kalman filter, SKF, unscented Kalman filter and unscented Schmidt-Kalman filter. It is implied that the covariance propagation using PCE leads to more accurate state estimation solutions in comparison with those based on linear propagation or unscented transformation.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Schmidt-Kalman Filter with Polynomial Chaos Expansion for State Estimation\",\"authors\":\"Yang Yang, Han Cai, Baichun Gong, R. Norman\",\"doi\":\"10.23919/fusion43075.2019.9011327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Errors due to uncertain parameters of dynamical systems can result in deterioration of state estimation performance or even filter divergence sometimes using a conventional Kalman filter algorithm. Even worse, these parameters cannot be measured accurately or are unobservable for many applications. Hence, estimating parameters along with state variables would not achieve satisfactory performance. To handle this problem, the Schmidt-Kalman filter (SKF) was introduced to compensate for these errors by considering parameters' covariance, with an assumption of only Gaussian distributions. This paper introduces a new SKF algorithm with polynomial chaos expansion (PCE-SKF). Within the framework of PCE, the dynamical system is predicted forward with an ability to quantify non-Gaussian parametric uncertainties as well. More specifically, the a priori covariance of both the state and parameters can be propagated using PCE, followed by the update step of SKF formulation. Two examples are given to validate the efficacy of the PCE-SKF. The state estimation performance by PCE-SKF is compared with the extended Kalman filter, SKF, unscented Kalman filter and unscented Schmidt-Kalman filter. It is implied that the covariance propagation using PCE leads to more accurate state estimation solutions in comparison with those based on linear propagation or unscented transformation.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传统的卡尔曼滤波算法由于动态系统参数的不确定性会导致状态估计性能的下降,有时甚至会导致滤波发散。更糟糕的是,在许多应用中,这些参数无法准确测量或无法观察到。因此,估计参数与状态变量将无法获得令人满意的性能。为了解决这个问题,引入了施密特-卡尔曼滤波(SKF),通过考虑参数的协方差来补偿这些误差,并假设只有高斯分布。本文介绍了一种新的多项式混沌展开的SKF算法(PCE-SKF)。在PCE的框架内,动力系统的预测具有量化非高斯参数不确定性的能力。更具体地说,可以使用PCE来传播状态和参数的先验协方差,然后进行SKF公式的更新步骤。通过两个实例验证了PCE-SKF的有效性。将PCE-SKF的状态估计性能与扩展卡尔曼滤波器、SKF、无气味卡尔曼滤波器和无气味施密特-卡尔曼滤波器进行了比较。结果表明,与基于线性传播或无气味变换的协方差传播方法相比,使用PCE的协方差传播方法可以得到更精确的状态估计解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schmidt-Kalman Filter with Polynomial Chaos Expansion for State Estimation
Errors due to uncertain parameters of dynamical systems can result in deterioration of state estimation performance or even filter divergence sometimes using a conventional Kalman filter algorithm. Even worse, these parameters cannot be measured accurately or are unobservable for many applications. Hence, estimating parameters along with state variables would not achieve satisfactory performance. To handle this problem, the Schmidt-Kalman filter (SKF) was introduced to compensate for these errors by considering parameters' covariance, with an assumption of only Gaussian distributions. This paper introduces a new SKF algorithm with polynomial chaos expansion (PCE-SKF). Within the framework of PCE, the dynamical system is predicted forward with an ability to quantify non-Gaussian parametric uncertainties as well. More specifically, the a priori covariance of both the state and parameters can be propagated using PCE, followed by the update step of SKF formulation. Two examples are given to validate the efficacy of the PCE-SKF. The state estimation performance by PCE-SKF is compared with the extended Kalman filter, SKF, unscented Kalman filter and unscented Schmidt-Kalman filter. It is implied that the covariance propagation using PCE leads to more accurate state estimation solutions in comparison with those based on linear propagation or unscented transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信