稀疏恢复中自适应的力量

P. Indyk, Eric Price, David P. Woodruff
{"title":"稀疏恢复中自适应的力量","authors":"P. Indyk, Eric Price, David P. Woodruff","doi":"10.1109/FOCS.2011.83","DOIUrl":null,"url":null,"abstract":"The goal of (stable) sparse recovery is to recover a $k$-sparse approximation $x^*$ of a vector $x$ from linear measurements of $x$. Specifically, the goal is to recover $x^*$ such that$$\\norm{p}{x-x^*} \\le C \\min_{k\\text{-sparse } x'} \\norm{q}{x-x'}$$for some constant $C$ and norm parameters $p$ and $q$. It is known that, for $p=q=1$ or $p=q=2$, this task can be accomplished using $m=O(k \\log (n/k))$ {\\em non-adaptive}measurements~\\cite{CRT06:Stable-Signal} and that this bound is tight~\\cite{DIPW, FPRU, PW11}. In this paper we show that if one is allowed to perform measurements that are {\\em adaptive}, then the number of measurements can be considerably reduced. Specifically, for $C=1+\\epsilon$ and $p=q=2$ we show\\begin{itemize}\\item A scheme with $m=O(\\frac{1}{\\eps}k \\log \\log (n\\eps/k))$ measurements that uses $O(\\log^* k \\cdot \\log \\log (n\\eps/k))$ rounds. This is a significant improvement over the best possible non-adaptive bound. \\item A scheme with $m=O(\\frac{1}{\\eps}k \\log (k/\\eps) + k \\log (n/k))$ measurements that uses {\\em two} rounds. This improves over the best possible non-adaptive bound. \\end{itemize} To the best of our knowledge, these are the first results of this type.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"On the Power of Adaptivity in Sparse Recovery\",\"authors\":\"P. Indyk, Eric Price, David P. Woodruff\",\"doi\":\"10.1109/FOCS.2011.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of (stable) sparse recovery is to recover a $k$-sparse approximation $x^*$ of a vector $x$ from linear measurements of $x$. Specifically, the goal is to recover $x^*$ such that$$\\\\norm{p}{x-x^*} \\\\le C \\\\min_{k\\\\text{-sparse } x'} \\\\norm{q}{x-x'}$$for some constant $C$ and norm parameters $p$ and $q$. It is known that, for $p=q=1$ or $p=q=2$, this task can be accomplished using $m=O(k \\\\log (n/k))$ {\\\\em non-adaptive}measurements~\\\\cite{CRT06:Stable-Signal} and that this bound is tight~\\\\cite{DIPW, FPRU, PW11}. In this paper we show that if one is allowed to perform measurements that are {\\\\em adaptive}, then the number of measurements can be considerably reduced. Specifically, for $C=1+\\\\epsilon$ and $p=q=2$ we show\\\\begin{itemize}\\\\item A scheme with $m=O(\\\\frac{1}{\\\\eps}k \\\\log \\\\log (n\\\\eps/k))$ measurements that uses $O(\\\\log^* k \\\\cdot \\\\log \\\\log (n\\\\eps/k))$ rounds. This is a significant improvement over the best possible non-adaptive bound. \\\\item A scheme with $m=O(\\\\frac{1}{\\\\eps}k \\\\log (k/\\\\eps) + k \\\\log (n/k))$ measurements that uses {\\\\em two} rounds. This improves over the best possible non-adaptive bound. \\\\end{itemize} To the best of our knowledge, these are the first results of this type.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"287 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

(稳定)稀疏恢复的目标是从$x$的线性测量中恢复向量$x$的$k$ -稀疏近似$x^*$。具体来说,目标是恢复$x^*$,以便$$\norm{p}{x-x^*} \le C \min_{k\text{-sparse } x'} \norm{q}{x-x'}$$对于一些常数$C$和规范参数$p$和$q$。众所周知,对于$p=q=1$或$p=q=2$,该任务可以使用$m=O(k \log (n/k))$非自适应{\em测量}\cite{CRT06:Stable-Signal}完成,并且该界是紧密的\cite{DIPW, FPRU, PW11}。在本文中,我们表明,如果允许执行自适应的测量,{\em那么}测量的数量可以大大减少。具体来说,对于$C=1+\epsilon$和$p=q=2$,我们显示\begin{itemize}\item 使用$O(\log^* k \cdot \log \log (n\eps/k))$轮的$m=O(\frac{1}{\eps}k \log \log (n\eps/k))$测量方案。这是对最佳非自适应边界的重大改进。 \item 使用轮$m=O(\frac{1}{\eps}k \log (k/\eps) + k \log (n/k))$测量的方案。这比可能的最佳非自适应界有所改进。 {\em}\end{itemize} 据我们所知,这是这种类型的第一次结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Power of Adaptivity in Sparse Recovery
The goal of (stable) sparse recovery is to recover a $k$-sparse approximation $x^*$ of a vector $x$ from linear measurements of $x$. Specifically, the goal is to recover $x^*$ such that$$\norm{p}{x-x^*} \le C \min_{k\text{-sparse } x'} \norm{q}{x-x'}$$for some constant $C$ and norm parameters $p$ and $q$. It is known that, for $p=q=1$ or $p=q=2$, this task can be accomplished using $m=O(k \log (n/k))$ {\em non-adaptive}measurements~\cite{CRT06:Stable-Signal} and that this bound is tight~\cite{DIPW, FPRU, PW11}. In this paper we show that if one is allowed to perform measurements that are {\em adaptive}, then the number of measurements can be considerably reduced. Specifically, for $C=1+\epsilon$ and $p=q=2$ we show\begin{itemize}\item A scheme with $m=O(\frac{1}{\eps}k \log \log (n\eps/k))$ measurements that uses $O(\log^* k \cdot \log \log (n\eps/k))$ rounds. This is a significant improvement over the best possible non-adaptive bound. \item A scheme with $m=O(\frac{1}{\eps}k \log (k/\eps) + k \log (n/k))$ measurements that uses {\em two} rounds. This improves over the best possible non-adaptive bound. \end{itemize} To the best of our knowledge, these are the first results of this type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信