基于人工神经网络的触发器在旋风V FPGA中实现,用于探测皮埃尔俄歇表面探测器中的中微子源阵雨

Z. Szadkowski, K. Pytel
{"title":"基于人工神经网络的触发器在旋风V FPGA中实现,用于探测皮埃尔俄歇表面探测器中的中微子源阵雨","authors":"Z. Szadkowski, K. Pytel","doi":"10.15439/2015F208","DOIUrl":null,"url":null,"abstract":"Observations of ultra-high energy neutrinos became a priority in experimental astroparticle physics. Up to now, the Pierre Auger Observatory did not find any candidate on a neutrino event. This imposes competitive limits to the diffuse flux of ultra-high energy neutrinos in the EeV range and above. The prototype Front-End boards for Auger-Beyond-2015 with Cyclone® V E can test the neural network algorithm in real pampas conditions in 2015. Showers for muon and tau neutrino initiating particles on various altitudes, angles and energies were simulated in CORSIKA and OffLine platforms giving pattern of ADC traces in Auger water Cherenkov detectors. The 3-layer 12-10-1 neural network was taught in MATLAB by simulated ADC traces according the Levenberg - Marquardt algorithm. New sophisticated trigger implemented in Cyclone® V E FPGAs with large amount of DSP blocks, embedded memory running with 120 - 160 MHz sampling may support to discover neutrino events in the Pierre Auger Observatory.","PeriodicalId":276884,"journal":{"name":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Trigger based on the artificial neural network implemented in the cyclone V FPGA for a detection of neutrino-origin showers in the Pierre Auger surface detector\",\"authors\":\"Z. Szadkowski, K. Pytel\",\"doi\":\"10.15439/2015F208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observations of ultra-high energy neutrinos became a priority in experimental astroparticle physics. Up to now, the Pierre Auger Observatory did not find any candidate on a neutrino event. This imposes competitive limits to the diffuse flux of ultra-high energy neutrinos in the EeV range and above. The prototype Front-End boards for Auger-Beyond-2015 with Cyclone® V E can test the neural network algorithm in real pampas conditions in 2015. Showers for muon and tau neutrino initiating particles on various altitudes, angles and energies were simulated in CORSIKA and OffLine platforms giving pattern of ADC traces in Auger water Cherenkov detectors. The 3-layer 12-10-1 neural network was taught in MATLAB by simulated ADC traces according the Levenberg - Marquardt algorithm. New sophisticated trigger implemented in Cyclone® V E FPGAs with large amount of DSP blocks, embedded memory running with 120 - 160 MHz sampling may support to discover neutrino events in the Pierre Auger Observatory.\",\"PeriodicalId\":276884,\"journal\":{\"name\":\"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15439/2015F208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2015F208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对超高能量中微子的观测成为实验天体粒子物理学的重点。到目前为止,皮埃尔·奥格天文台还没有发现任何中微子事件的候选者。这对EeV及以上范围内超高能量中微子的扩散通量施加了竞争限制。带有Cyclone®V E的auger - beyon2015的原型前端板可以在2015年在真实的潘潘草原条件下测试神经网络算法。在CORSIKA和OffLine平台上模拟了不同高度、角度和能量的μ子和τ中微子引发粒子的簇射,给出了俄歇水切伦科夫探测器的ADC迹线模式。根据Levenberg - Marquardt算法,通过模拟ADC轨迹,在MATLAB中对3层12-10-1神经网络进行了教学。在Cyclone®V E fpga中实现的新型复杂触发器具有大量DSP块,嵌入式内存运行120 - 160 MHz采样可能支持在皮埃尔·奥格天文台发现中微子事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trigger based on the artificial neural network implemented in the cyclone V FPGA for a detection of neutrino-origin showers in the Pierre Auger surface detector
Observations of ultra-high energy neutrinos became a priority in experimental astroparticle physics. Up to now, the Pierre Auger Observatory did not find any candidate on a neutrino event. This imposes competitive limits to the diffuse flux of ultra-high energy neutrinos in the EeV range and above. The prototype Front-End boards for Auger-Beyond-2015 with Cyclone® V E can test the neural network algorithm in real pampas conditions in 2015. Showers for muon and tau neutrino initiating particles on various altitudes, angles and energies were simulated in CORSIKA and OffLine platforms giving pattern of ADC traces in Auger water Cherenkov detectors. The 3-layer 12-10-1 neural network was taught in MATLAB by simulated ADC traces according the Levenberg - Marquardt algorithm. New sophisticated trigger implemented in Cyclone® V E FPGAs with large amount of DSP blocks, embedded memory running with 120 - 160 MHz sampling may support to discover neutrino events in the Pierre Auger Observatory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信