{"title":"如何利用分析工具预测聚合物驱的注入能力","authors":"E. Delamaide","doi":"10.2118/195513-MS","DOIUrl":null,"url":null,"abstract":"\n One of the main uncertainties when designing polymer floods is the polymer injectivity, an important parameter that can affect the economics of the process. Reservoir simulation can be used to forecast injectivity, but the process is not straightforward and can be affected by grid size and other factors. Analytical methods are also available for that purpose, but they are considered too simplistic to deal with realistic reservoir conditions. The aim of this paper is to show that this is not the case and that simple analytical tools can be accurate and of great help to predict or history match polymer injectivity.\n The analytical method has been developed by Lake in his classical textbook on Enhanced Oil Recovery, but few applications are documented in the literature. This paper will review the method and corresponding equations before presenting several actual field cases of injectivity in polymer flood pilots or tests from several countries that have been matched analytically.\n Although it has not been used very often, the method has been found to give very good results in most of the field cases tested in a variety of situations; these cases will be presented along with recommendations on how to apply the method and a discussion of the results. Sensitivities to the various parameters will also be presented. Once the equations are programmed in a spreadsheet, the matching process takes only a few minutes and it is easy to run various scenarios and sensitivities.\n Polymer injectivity remains one of the less understood and less predictable aspects of polymer flood projects. This paper will encourage engineers who are planning such projects to use simple yet accurate analytical tools before embarking in more complex and time-consuming reservoir simulations.","PeriodicalId":103248,"journal":{"name":"Day 4 Thu, June 06, 2019","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"How to Use Analytical Tools to Forecast Injectivity in Polymer Floods\",\"authors\":\"E. Delamaide\",\"doi\":\"10.2118/195513-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n One of the main uncertainties when designing polymer floods is the polymer injectivity, an important parameter that can affect the economics of the process. Reservoir simulation can be used to forecast injectivity, but the process is not straightforward and can be affected by grid size and other factors. Analytical methods are also available for that purpose, but they are considered too simplistic to deal with realistic reservoir conditions. The aim of this paper is to show that this is not the case and that simple analytical tools can be accurate and of great help to predict or history match polymer injectivity.\\n The analytical method has been developed by Lake in his classical textbook on Enhanced Oil Recovery, but few applications are documented in the literature. This paper will review the method and corresponding equations before presenting several actual field cases of injectivity in polymer flood pilots or tests from several countries that have been matched analytically.\\n Although it has not been used very often, the method has been found to give very good results in most of the field cases tested in a variety of situations; these cases will be presented along with recommendations on how to apply the method and a discussion of the results. Sensitivities to the various parameters will also be presented. Once the equations are programmed in a spreadsheet, the matching process takes only a few minutes and it is easy to run various scenarios and sensitivities.\\n Polymer injectivity remains one of the less understood and less predictable aspects of polymer flood projects. This paper will encourage engineers who are planning such projects to use simple yet accurate analytical tools before embarking in more complex and time-consuming reservoir simulations.\",\"PeriodicalId\":103248,\"journal\":{\"name\":\"Day 4 Thu, June 06, 2019\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, June 06, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/195513-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, June 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195513-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How to Use Analytical Tools to Forecast Injectivity in Polymer Floods
One of the main uncertainties when designing polymer floods is the polymer injectivity, an important parameter that can affect the economics of the process. Reservoir simulation can be used to forecast injectivity, but the process is not straightforward and can be affected by grid size and other factors. Analytical methods are also available for that purpose, but they are considered too simplistic to deal with realistic reservoir conditions. The aim of this paper is to show that this is not the case and that simple analytical tools can be accurate and of great help to predict or history match polymer injectivity.
The analytical method has been developed by Lake in his classical textbook on Enhanced Oil Recovery, but few applications are documented in the literature. This paper will review the method and corresponding equations before presenting several actual field cases of injectivity in polymer flood pilots or tests from several countries that have been matched analytically.
Although it has not been used very often, the method has been found to give very good results in most of the field cases tested in a variety of situations; these cases will be presented along with recommendations on how to apply the method and a discussion of the results. Sensitivities to the various parameters will also be presented. Once the equations are programmed in a spreadsheet, the matching process takes only a few minutes and it is easy to run various scenarios and sensitivities.
Polymer injectivity remains one of the less understood and less predictable aspects of polymer flood projects. This paper will encourage engineers who are planning such projects to use simple yet accurate analytical tools before embarking in more complex and time-consuming reservoir simulations.