Zun Htay, Zabih Ghassemlooy, S. Zvánovec, M. M. Abadi, A. Burton
{"title":"大气条件下使用usrp实现和验证软件定义FSO的实验测试平台","authors":"Zun Htay, Zabih Ghassemlooy, S. Zvánovec, M. M. Abadi, A. Burton","doi":"10.1109/CSNDSP54353.2022.9908057","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a proof of concept for the software defined-based free space optical communication (FSO) using GNU radio eco-system. We present a highly reconfigurable real-time FSO system to emulate the atmospheric conditions for the medium-to-long transmission range. Using an experimental testbed, we validate the proposed concept utilizing universal software radio peripherals. We show that the software defined FSO system offers greater flexibility, less complexity, and provides real-time signal processing results without the need to change the architecture of the hardware and the physical link space. The system performance is evaluated in terms of the estimated bit error rate under fog and turbulence conditions for 200 m link span.","PeriodicalId":288069,"journal":{"name":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Testbed for Implementation and Validation of Software defined FSO under Atmospheric Conditions using USRPs\",\"authors\":\"Zun Htay, Zabih Ghassemlooy, S. Zvánovec, M. M. Abadi, A. Burton\",\"doi\":\"10.1109/CSNDSP54353.2022.9908057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a proof of concept for the software defined-based free space optical communication (FSO) using GNU radio eco-system. We present a highly reconfigurable real-time FSO system to emulate the atmospheric conditions for the medium-to-long transmission range. Using an experimental testbed, we validate the proposed concept utilizing universal software radio peripherals. We show that the software defined FSO system offers greater flexibility, less complexity, and provides real-time signal processing results without the need to change the architecture of the hardware and the physical link space. The system performance is evaluated in terms of the estimated bit error rate under fog and turbulence conditions for 200 m link span.\",\"PeriodicalId\":288069,\"journal\":{\"name\":\"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNDSP54353.2022.9908057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP54353.2022.9908057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Experimental Testbed for Implementation and Validation of Software defined FSO under Atmospheric Conditions using USRPs
In this paper, we propose a proof of concept for the software defined-based free space optical communication (FSO) using GNU radio eco-system. We present a highly reconfigurable real-time FSO system to emulate the atmospheric conditions for the medium-to-long transmission range. Using an experimental testbed, we validate the proposed concept utilizing universal software radio peripherals. We show that the software defined FSO system offers greater flexibility, less complexity, and provides real-time signal processing results without the need to change the architecture of the hardware and the physical link space. The system performance is evaluated in terms of the estimated bit error rate under fog and turbulence conditions for 200 m link span.