{"title":"非线性散射态的强度分布","authors":"T. Hartmann, J. Urbina, K. Richter, P. Schlagheck","doi":"10.1063/1.4745581","DOIUrl":null,"url":null,"abstract":"We investigate the interplay between coherent effects characteristic of the propagation of linear waves, the non-linear effects due to interactions, and the quantum manifestations of classical chaos due to geometrical confinement, as they arise in the context of the transport of Bose-Einstein condensates. We specifically show that, extending standard methods for non-interacting systems, the body of the statistical distribution of intensities for scattering states solving the Gross-Pitaevskii equation is very well described by a local Gaussian ansatz with a position-dependent variance. We propose a semiclassical approach based on interfering classical paths to fix the single parameter describing the universal deviations from a global Gaussian distribution. Being tail effects, rare events like rogue waves characteristic of non-linear field equations do not affect our results.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intensity distribution of non-linear scattering states\",\"authors\":\"T. Hartmann, J. Urbina, K. Richter, P. Schlagheck\",\"doi\":\"10.1063/1.4745581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the interplay between coherent effects characteristic of the propagation of linear waves, the non-linear effects due to interactions, and the quantum manifestations of classical chaos due to geometrical confinement, as they arise in the context of the transport of Bose-Einstein condensates. We specifically show that, extending standard methods for non-interacting systems, the body of the statistical distribution of intensities for scattering states solving the Gross-Pitaevskii equation is very well described by a local Gaussian ansatz with a position-dependent variance. We propose a semiclassical approach based on interfering classical paths to fix the single parameter describing the universal deviations from a global Gaussian distribution. Being tail effects, rare events like rogue waves characteristic of non-linear field equations do not affect our results.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.4745581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4745581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intensity distribution of non-linear scattering states
We investigate the interplay between coherent effects characteristic of the propagation of linear waves, the non-linear effects due to interactions, and the quantum manifestations of classical chaos due to geometrical confinement, as they arise in the context of the transport of Bose-Einstein condensates. We specifically show that, extending standard methods for non-interacting systems, the body of the statistical distribution of intensities for scattering states solving the Gross-Pitaevskii equation is very well described by a local Gaussian ansatz with a position-dependent variance. We propose a semiclassical approach based on interfering classical paths to fix the single parameter describing the universal deviations from a global Gaussian distribution. Being tail effects, rare events like rogue waves characteristic of non-linear field equations do not affect our results.