基于密度的无监督尺度选择车辆计数

P. Dobes, Jakub Špaňhel, Vojtech Bartl, Roman Juránek, A. Herout
{"title":"基于密度的无监督尺度选择车辆计数","authors":"P. Dobes, Jakub Špaňhel, Vojtech Bartl, Roman Juránek, A. Herout","doi":"10.1109/DICTA51227.2020.9363401","DOIUrl":null,"url":null,"abstract":"A significant hurdle within any counting task is the variance in a scale of the objects to be counted. While size changes of some extent can be induced by perspective distortion, more severe scale differences can easily occur, e.g. in case of images taken by a drone from different elevations above the ground. The aim of our work is to overcome this issue by leveraging only lightweight dot annotations and a minimum level of training supervision. We propose a modification to the Stacked Hourglass network which enables the model to process multiple input scales and to automatically select the most suitable candidate using a quality score. We alter the training procedure to enable learning of the quality scores while avoiding their direct supervision, and thus without requiring any additional annotation effort. We evaluate our method on three standard datasets: PUCPR+, TRANCOS and CARPK. The obtained results are on par with current state-of-the-art methods while being more robust towards significant variations in input scale.","PeriodicalId":348164,"journal":{"name":"2020 Digital Image Computing: Techniques and Applications (DICTA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Density-Based Vehicle Counting with Unsupervised Scale Selection\",\"authors\":\"P. Dobes, Jakub Špaňhel, Vojtech Bartl, Roman Juránek, A. Herout\",\"doi\":\"10.1109/DICTA51227.2020.9363401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A significant hurdle within any counting task is the variance in a scale of the objects to be counted. While size changes of some extent can be induced by perspective distortion, more severe scale differences can easily occur, e.g. in case of images taken by a drone from different elevations above the ground. The aim of our work is to overcome this issue by leveraging only lightweight dot annotations and a minimum level of training supervision. We propose a modification to the Stacked Hourglass network which enables the model to process multiple input scales and to automatically select the most suitable candidate using a quality score. We alter the training procedure to enable learning of the quality scores while avoiding their direct supervision, and thus without requiring any additional annotation effort. We evaluate our method on three standard datasets: PUCPR+, TRANCOS and CARPK. The obtained results are on par with current state-of-the-art methods while being more robust towards significant variations in input scale.\",\"PeriodicalId\":348164,\"journal\":{\"name\":\"2020 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA51227.2020.9363401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA51227.2020.9363401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在任何计数任务中,一个重要的障碍是待计数对象的比例差异。虽然透视失真会引起一定程度的尺寸变化,但也容易产生更严重的尺度差异,例如无人机从地面以上不同高度拍摄的图像。我们工作的目的是通过仅利用轻量级点注释和最低级别的训练监督来克服这个问题。我们提出了对堆叠沙漏网络的修改,使模型能够处理多个输入尺度,并使用质量分数自动选择最合适的候选对象。我们改变了训练过程,以便在避免直接监督的情况下学习质量分数,因此不需要任何额外的注释工作。我们在PUCPR+、TRANCOS和CARPK三个标准数据集上对我们的方法进行了评估。所获得的结果与当前最先进的方法相当,同时对输入规模的显着变化更加稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density-Based Vehicle Counting with Unsupervised Scale Selection
A significant hurdle within any counting task is the variance in a scale of the objects to be counted. While size changes of some extent can be induced by perspective distortion, more severe scale differences can easily occur, e.g. in case of images taken by a drone from different elevations above the ground. The aim of our work is to overcome this issue by leveraging only lightweight dot annotations and a minimum level of training supervision. We propose a modification to the Stacked Hourglass network which enables the model to process multiple input scales and to automatically select the most suitable candidate using a quality score. We alter the training procedure to enable learning of the quality scores while avoiding their direct supervision, and thus without requiring any additional annotation effort. We evaluate our method on three standard datasets: PUCPR+, TRANCOS and CARPK. The obtained results are on par with current state-of-the-art methods while being more robust towards significant variations in input scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信