大数据中具有自适应去模糊化的可扩展进化语言模糊系统

Antonio A. Márquez, F. A. Márquez, A. Peregrín
{"title":"大数据中具有自适应去模糊化的可扩展进化语言模糊系统","authors":"Antonio A. Márquez, F. A. Márquez, A. Peregrín","doi":"10.1109/FUZZ-IEEE.2017.8015753","DOIUrl":null,"url":null,"abstract":"This work deals with the design of scalable methodologies to build the Rule Bases of Linguistic Fuzzy Rule Based Systems from examples for Fuzzy Regression in Big Data environments. We propose a distributed MapReduce model based on the use of an adaptation of a classic data driven method followed by an Evolutionary Adaptive Defuzzification to increase the accuracy of the final fuzzy model.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A scalable evolutionary linguistic fuzzy system with adaptive defuzzification in big data\",\"authors\":\"Antonio A. Márquez, F. A. Márquez, A. Peregrín\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with the design of scalable methodologies to build the Rule Bases of Linguistic Fuzzy Rule Based Systems from examples for Fuzzy Regression in Big Data environments. We propose a distributed MapReduce model based on the use of an adaptation of a classic data driven method followed by an Evolutionary Adaptive Defuzzification to increase the accuracy of the final fuzzy model.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本研究从大数据环境中的模糊回归实例出发,设计可扩展的方法来构建基于语言模糊规则的系统的规则库。我们提出了一种分布式MapReduce模型,该模型基于对经典数据驱动方法的改进,然后采用进化自适应去模糊化来提高最终模糊模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scalable evolutionary linguistic fuzzy system with adaptive defuzzification in big data
This work deals with the design of scalable methodologies to build the Rule Bases of Linguistic Fuzzy Rule Based Systems from examples for Fuzzy Regression in Big Data environments. We propose a distributed MapReduce model based on the use of an adaptation of a classic data driven method followed by an Evolutionary Adaptive Defuzzification to increase the accuracy of the final fuzzy model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信