产品测试的硬币问题

Chin Ho Lee, Emanuele Viola
{"title":"产品测试的硬币问题","authors":"Chin Ho Lee, Emanuele Viola","doi":"10.1145/3201787","DOIUrl":null,"url":null,"abstract":"Let Xm,ϵ be the distribution over m bits X1,…,Xm where the Xi are independent and each Xi equals 1 with probability (1−ϵ)/2 and 0 with probability (1 − ϵ)/2. We consider the smallest value ϵ* of ϵ such that the distributions Xm, ϵ and Xm, 0 can be distinguished with constant advantage by a function f : {0,1}m → S, which is the product of k functions f1,f2,…, fk on disjoint inputs of n bits, where each fi : {0,1}n → S and m = nk. We prove that ϵ* = Θ(1/√n log k) if S = [−1,1], while ϵ* = Θ(1/√nk) if S is the set of unit-norm complex numbers.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The Coin Problem for Product Tests\",\"authors\":\"Chin Ho Lee, Emanuele Viola\",\"doi\":\"10.1145/3201787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Xm,ϵ be the distribution over m bits X1,…,Xm where the Xi are independent and each Xi equals 1 with probability (1−ϵ)/2 and 0 with probability (1 − ϵ)/2. We consider the smallest value ϵ* of ϵ such that the distributions Xm, ϵ and Xm, 0 can be distinguished with constant advantage by a function f : {0,1}m → S, which is the product of k functions f1,f2,…, fk on disjoint inputs of n bits, where each fi : {0,1}n → S and m = nk. We prove that ϵ* = Θ(1/√n log k) if S = [−1,1], while ϵ* = Θ(1/√nk) if S is the set of unit-norm complex numbers.\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3201787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3201787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们考虑最小的λ *,使得分布Xm, λ和Xm, 0可以用一个函数f: {0,1}m→S来区分,它是k个函数f1,f2,…,fk在n位的不相交输入上的乘积,其中每个fi: {0,1}n→S和m = nk。我们证明了如果S =[−1,1],则λ * = Θ(1/√n log k),而如果S是单位范数复数的集合,则λ * = Θ(1/√nk)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Coin Problem for Product Tests
Let Xm,ϵ be the distribution over m bits X1,…,Xm where the Xi are independent and each Xi equals 1 with probability (1−ϵ)/2 and 0 with probability (1 − ϵ)/2. We consider the smallest value ϵ* of ϵ such that the distributions Xm, ϵ and Xm, 0 can be distinguished with constant advantage by a function f : {0,1}m → S, which is the product of k functions f1,f2,…, fk on disjoint inputs of n bits, where each fi : {0,1}n → S and m = nk. We prove that ϵ* = Θ(1/√n log k) if S = [−1,1], while ϵ* = Θ(1/√nk) if S is the set of unit-norm complex numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信